P; : INDUCTION MAGNETIQUE — ETUDE D’'UN
DIPOLE (R, L)

1. INDUCTION ELECTROMAGNETIQUE
1.1. Définition du flux magnétique

Par définition, le flux magnétique a travers un contour délimité par une surface S
est le nombre de lignes de champ magnétiques qui traversent ce contour fermé.

Son expression est : [P = BS=SBi= B.S.Cos(ﬁ,_ﬁ)

Le flux est une grandeur algébrique qui s’exprime dans le systéme international en
weber (Wb).
=

[ N -
N : est un vecteur unitaire normal a la surface S du contour. Le sens de n est

donné par la regle de la main droite.

Exemples
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NB : Pour un contour comportant N spires, ona: [P = NB.S

1.2. Régle du flux magnétique

Un circuit parcouru par un courant électrique I et placé dans un champ

magnétique uniforme tant a se déplacer de facon a ce que le flux magnétique qui

le traverse soit maximal.

1.3. Mise en évidence du phénomeéne d’induction

électromagnétique




On dispose d’une bobine reliée a un

galvanométre 2 zéro central et d’un aimant Aimant Bobine
droit. s N
» Enapprochant par exemple le pole A
nord de laimant de la bobine, f
aiguille du galvanometre dévie ; si Galvanometre

on approche le pole sud, I'aiguille
dévie dans le sens contraire.
» On observe le méme phénoméne en éloignant 'un des pdles de 'aimant

ou en déplacant la bobine par rapport a 'aimant fixe.
Interprétations
La déviation de I'aiguille montre qu’il y a passage d’un courant électrique dans le
circuit. Ce courant est appelé courant induit. Il est da a une variation du flux
magnétique a travers la bobine.
La bobine dans la laquelle circule le courant est Pinduit. I’aimant qui est a
Porigine de cette variation est 'inducteur. Ce phénomene est appelé induction
électromagnétique.

1.4. Loi de Lenz
Enoncé : Le sens du courant induit est tel que par ses effets il tend a s’opposer a
la cause qui lui a donné naissance.

Dans le cas précédent, la variation du flux magnétique a travers la bobine est due
a la variation du champ magnétique B de I'aimant dans la bobine. Le sens du
courant induit est tel que ce courant crée un champ By,g (champ magnétique

induit) qui tend a s’opposer a la variation du champ magnétique inducteur B.

—

| —
B i B | B =
N (72 || S —— ||, Bn,
Approchement de 'aimant Eloignement de 'aimant
1.5. Fore électromotrice induite

Le courant induit est généré par une force électromotrice induite : e

La f.é.m. induite moyenne dans un circuit est égale a l'opposé de la variation du

= _Ad

flux inducteur a travers ce circuit par unité de temps. (€, =
At

: Loi de

Faraday



La f.¢.m. induite (instantanée) dans un circuit est égale a l'opposé de la dérivée par
d
dt

Si R est la résistance du circuit induit, en I’absence de toute autre force

rapport au temps du flux inducteur a travers ce circuit. |€ =

électromotrice dans le circuit, Uintensité algébrique du courant induit est donnée

. e 1d
par la relation : {1 = = = _lde
R R dt

Application
Deux rails  conductenrs AA’ et CC,
paralléles, de résistance négligeable, séparés ) L
par une distance € = 25 cm, sont placés dans 3

un plan  horizontal. Une tige miétallique

rigide, de masse négligeable, perpendiculaire 4N .
an plan des rails, pent glisser sans frottement c c

dans une direction paralléle anx: rails. La résistance de la tige est R = 0,8 €. L'ensemble est
placé dans un champ magnétique B perpendiculaire au plan des rails et d'intensité B =1 T.
On déplace la tige a la vitesse constante v =10 m.s"', de ganche a droite.

1/ Choisir sur le circuit un sens de parconrs arbitraire et déterminer le vecteur surface Ky puis
calenler le fluxc du champ magnétique a travers ce circuit pour une position quelcongue de la tige
MN. Poser AM = x.

2/ En utilisant la loi de FARADAY :

2.1/ Calenler la force électromotrice induite e qui apparait dans le circuit.

2.2/ Caleuler Uintensité du conrant induit. Quel est son sens ?

3/ Retronver le sens du courant induit en utilisant la loi de LENZ.

4/ Représenter la force électromagnétique créée an conrs du déplacement de la tige.

2. AUTO-INDUCTION

2.1. Mise en évidence du phénoméne d’auto-induction

Considérons le circuit suivant. Les lampes L et R L
. . L. 1
L, sont identiques, les valeurs des résistances du

résistor et de la bobine sont égales. Bobine

L2
On constate que :

» En fermant linterrupteur K, L; brille
progressivement et  L;  brille G |I e

instantanément.




» En ouvrant ensuite K, Ly s%éteint progressivement et Li s’éteint

instantanément.
Interprétations
L’installation du courant dans la bobine entraine une variation du flux magnétique
a travers la bobine. Il se produit une induction magnétique et apparition d’'une
f.é.m. induite aux bornes de la bobine qui tend a s'opposer a la variation du flux
magnétique. La bobine est a la fois I'inducteur et Iinduit c’est pourquoi le
phénoméne est appelé auto-induction.

2.2 Inductance d’une bobine

-
Lorsque qu’une bobine est parcourue par un courant, elle crée un champ B. Le
flux de ce champ magnétique 2 travers la bobine est appelé flux propre. Ce flux
est proportionnel a I'intensité du courant i qui traverse la bobine.

Le coefficient de proportionnalité L : est une constante positive. On I'appelle

inductance ou coefficient de self inductance ou self de la bobine. C’est une

caractéristique de la bobine. L’inductance s’exprime en Henry (H).
Expression de L pour un solénoide

Considérons un solénoide de rayon R, de longueur { comportant N spites

parcouru par un courant i.

. NBS N, N2y 7R
(I)=L1=NBS$L=T OI'B=|10?1=>L=T
2.3. Tension aux bornes d’une bobine parcourue par un
courant d’intensité variable
On peut considérer une bobine parcourue par un ) (Lr)
I

courant d’intensité variable i comme un dipéle | A e—» YYVL__,
AB constitué d’un générateur de tension, de f.é.m i

égale ala f.é.m. d’auto-induction e, en série avec A - @ B

un conducteur ohmique de résistance r égale a la ri e

résistance du fil constituant la bobine.

La tension aux bornes de la bobine en convention

récepteur est donnée par :|U = upg = ti-¢€

. . . . d . di
Si L : est 'inductance de la bobine, alors on a : u = ri + d_(r =ri+ La

. di
>|lu=n+L—
dt




L’expression de la puissance instantanée échangée par la bobine est :

. . . di
P:u1:r12+L1d—
t

dzyo i di_1d —ri2+Ld2) =
S@) =21 =is=12@)=|P=ri +2dt(1)—Pl+Pm

P,, = puissance magnétique ; P; = puissance perdue par effet joule

I’énergie magnétique W échangée par la bobine est telle que :

aw _ 1d 1y _ 4 =172
dt:Zdt(Ll)—dt(W)=>W 2L1

P, =

En courant continu, une bobine stocke de I’énergie a la fermeture du circuit et

restitue cette énergie a 'ouverture du circuit.

Remarques
¢ Dans le cas ou la bobine est une inductance pure, sa résistance est nulle
L S, o di
et la tension a ses bornes s’écrit : |up = T
t
. di _
¢ En régime permanant, le courant est constant rri 0 ), 1a tension aux

bornes de la bobine s’écrit : [uy, = ri|; la bobine se comporte comme

un conducteur ohmique (résistor).

3. ETUDE __THEORIQUE DU
DIPOLE (R, L) -

Réalisons le circuit suivant :

. id (L) R
3.1. Etablissement du courant

. K
En fermant K; et en ouvrant Ky, le courant s’installe 4|I—/17
o I

progressivement. Clest le régime transitoire.

Lorsque le régime permanent est atteint, 'intensité s K2
q gime p s

du courant devient constante.

Soit i I'intensité du courant au régime transitoire. En appliquant la loi des mailles
ona:lg, +u, =E=Riji+ri+LT=E=iR, +1)+L3 =E
En posant: R = (R; +1r),ona:

—+-1= T Equation différentielle du premier ordre avec second membre.

. . . L. E _E
Soit I, lintensité du coutant au régime permanent. On a : I, = I EE 10 = E




Résolution de ’équation différentielle

L di R, i .
L’équation sans second membre est o + = 0; La solution homogene est:

R,
ih = Ke L

. T . di . E
La solution particuliere est une constante ip = K; = d—f =0 = p=z= Iy

. . . . —Bt E . 7Bt E
La solution i = ip, +1i, = Ke'l' + - = 1=Ke Lt s

Détermination de la constante K:at=0;i=0=K = —E =
E Bt Et
i= —(1 -efh):IO(l -e*n)
R
3.2. Annulation du courant

En fermant K et en ouvrant Kj, la bobine restitue son énergie au reste du circuit
di . . . _R
onadonc:La+R11+rl =0;enposant: R= (R, +1),0na:i=Ke L'

At = 0 ; cC’est-a-dire I'instant ou on annule le courant, on a :

. E E . B _R _R
l=IO=E $K=E$ 1:§e Lt:I()C t

3.3. Constante de temps T

L
La grandeur |T = =l est homogene a une durée. Elle est appelée constante de

temps du dipdle (R, L). Son unité est la seconde (S). Cette constante fournit un
ordre de grandeur de la durée de la réponse d’un dipdle (R, L).
En effet :

¢ Pour Pétablissement du courant on a: A t=1, i=[(1—e7) =
0,631,= 63%I,
¢  Pour l'annulation du courant : At =1,i = I[ge™ = 0,371, = 37%],

Détermination graphique de la constante de temps

R R
Tragons les courbes :1 = I (1 —-e It) eti=Iye Lt



60
0,631, |- &
g K&
H o2 :)o
i N
' S
' e t t
0 : > >
0T

Théoriquement le courant ne s'annule jamais et que le temps d’installation ou
d’annulation du courant est infiniment grand. Toutefois, en pratique, nous
constatons qu'aptes un temps égal a 5 fois la constante de temps (t = 51), le
courant d’installation vaut 0,991, et le courant d’annulation vaut 0,007I, et donc
nous pouvons considérer que linstallation (ou I’annulation) du courant est
terminée.



P, : ETUDE DU DIPOLE (R, C)

1. RAPPELS
Considérons un condensateur de capacité C en convention i ||
récepteur. On choisit un sens positif pour le courant i. all-q
-—
(=9 _ 9 ue
=d.,. =13
d& > € C

Remarques :
¢ Les grandeurs : 1, q et Uc sont algébriques. La capacité C est positive.
¢ La charge du condensateur est positive. Elle est égale a la valeur
absolue de g. Si elle augmente, le condensateur se charge et si elle
diminue, le condensateur se décharge.

2. CHARGE D’UN CONDENSATEUR
2.

1. Charge d’un condensateur avec un générateur de

courant A intensité constante

Considérons le circuit ci-contre. Le générateur de courant

délivre un courant d’intensité constante et réglable. Le

condensateur est initialement déchargé (qo = 0).

On fixe la valeur de P’intensité I du courant.

—da = = .
I=—=dq=Idt=|q=1It+ K|;
AtZO,quo:OﬁK=O$

2.2, Charge d’un condensateur avec un générateur de

tension constante

a) Expérience

Réalisons le circuit série ci-contre constitué par :

o un générateur de tension continue constante voie A
defém. E=6V;

O un résistor de résistance R ;
voie B

) uRT R

. E C
o un condensateur de capacité C [
o un interrupteur K

UcT C
On ferme linterrupteur K a une date t =0 et on M
visualise a l'aide d’un oscilloscope bicourbe les




tensions uc aux bornes du condensateur et ug aux bornes du générateur. On
obtient 'oscillogramme ci-dessous

u(v)
6

voie A

voie B

0 t

b) Observations
¢ La tension aux bornes du condensateur croit progressivement et au
régime permanent (a la fin de la charge du condensateur), la tension a
ses bornes est égale a la f.é.m. du générateur.uc =6V ;
max
+ La tension aux bornes du résistor est : ug = Ri = E - uc. Cette tension
décroit progressivement. Donc I'intensité du courant décroit. A la fin de

la charge, uyg=0=1=0

3. ETUDE THEORIQUE DU DIPOLE (R, C)

3.1. Charge et décharge d’un condensateur en série avec un

résistor

Soit le circuit suivant permettant la charge et la décharge
du condensateutr.

» Charge du condensateur
En fermant linterrupteur sur la position 1, le
condensateur se charge.
En appliquant laloi des mailles a un instant t de la charge,
onobtient: E—ug —Rc=0=uc+ug =E

4, pda_
=>C+Rdt—Ez



1 __©

= R q= R : équation différentielle de la charge

1
. < .. ——t . . I
La solution homogene s’écrit: q, = Ke RC™; la solution particuliére est
constante : q, = EC

1
La solution finale est : ¢ = Ke Re" + EC

1 1
At=0,q=0=K=—EC=q=—ECe =" +EC = EC(1—eR") ;

q:EC(l—e*RLCt) Sug=¢= uC:E(l_eiR%t)

\ 1
. d 1 _L . E — —t
1=—q=EC(—e Rct)=> i== ¢ RC
dt RC R

La puissance instantanée du condensateur est :
. qdq 11d , » d/f1 5
P=ui==-—====— = —(=
C dt CZdt(q) dt 2Cq
L’énergie instantanée emmagasinée par le condensateur est telle que :
dw dw d/1 d d/1
P:—ﬁ—:—(— 2)=>—W =—(— 2):}
dt dt dt \2C q dt ( ) dt \2C !

<
C

W= -
2

1 1
Cuz = -qug = -
c— 394 — ;3

»

Décharge du condensateur

A la fin de la charge du condensateur, on bascule 'interrupteur en position 2, le
condensateur se décharge sur le résistor.

La loi des mailles donne : uc + Ri = 0 =

d 1
d—ctl + <d= 0] : équation différentielle de la décharge

1 —
q=Ke®R";At=0,q=CE=K=CE= qZCE€_RCt

1 1
dq E _—¢ q ——t
1=— =—=¢ RC|;|lu== = Ee k¢
dt R C
Remarque
E _L1¢ E _ L1
Le courant de charge esti = ze RC™ etle courant de décharge est 1 = — =€ RC,

Ces deux courants ont des signes contraires.



3.2.  Constante de temps du dipdle (R, C)
Le produit homogene a une durée, est appelé constante de temps du

dipdle (R, C) et s’exprime en seconde (s). La constante de temps T donne l'ordre
de grandeur de I’établissement du régime permanent.

Détermination de la constante de temps
v’ 1ée méthode

1
Lors de la chatge,ona:uc = E (1 — e_R_Ct), aladatet =t=RC=

uc =E(1 —e™) = 0,63E = 63%E
Pour la décharge, ala date t = t,ona: ug = 0,37E = 37%E
v’ 2¢me Méthode

1 t
— du E - du E

Lors de la chatge ona:uc = E (1 —e RCt) =—t= er= (—C) =-
t=0 T

dt dt
L’équation de la tangente a Porigine est u = (dstC) [t—0] +u(0) = %t
t=0

Cette tangente coupe 'asymptote u = E au point d’abscisse : t = 7.

E
Eneffet,ona:;t=E=>t=‘t

Pour la décharge I’équation de la tangente a l'origine est : U = — Et +E
A UC A uc
Elofo
0’
0,63E]-. Qf &
! FO
i & bco
| &
| ¢
i t
0 - >
0T




P, : OSCILLATIONS ELECTRIQUES LIBRES ET
OSCILLATIONS ELECTRIQUES FORCEES

1. OSCILLATIONS ELECTRIQUES LIBRES

1.1. Etude expérimentale du circuit (L, C)

Réalisons le circuit suivant :

La f.é.m du générateurest : E=6V.

Fermons Dlinterrupteur sur la position 1: le
condensateur  se  charge. Basculons  ensuite
I'interrupteur sur la position 2 et visualisons la tension
uc aux bornes du condensateur a laide dun

oscilloscope. On obtient les oscillogrammes suivants :

Ay Ay
6 6
t t
-6 -6
R = 0: Oscillations libres non amorties R # 0 : Oscillations libres amorties

NB : la période des oscillations augmente avec les valeurs de L et de C.

1.2. Etude théorique du circuit (L, C)
a) Oscillations libres non amorties (R = 0)

¢ Equation différentielle de la tension uc du condensateur

Reprenons le circuit précédent et appliquons la loi des mailles lorsqu’on bascule

linterrupteur sur @



uctu, =0= uc+L— =0=uc+tL—- (dt) 0= uc +L (Cu() 0=

2
d? uc d“uc 1
+uc=0 = + —uc =
¢ e Lc ©
La solution de cette équation différentielle est de la forme :

|uC = U,, cos(wyt + ¢)|

Uy, et ¢ : sont des constantes a déterminer pat les conditions initiales.

LC 0

1
Wy = c|est la pulsation propre du circuit (I, C) ;

2
Ty = w—z = 21V LC|: est la période propre

1
2nV1.C

¢+ Energie totale dans le circuit (L, C)

N():

: est la fréquence propre

1
At=0,uc=Eetuy =0= |W, = ECEZ

. ) 1 1.,
A un instant t donné on a: W(t)= 3 CuZ + 3 Li?
d

=714 ( ue) = CG’“L = _ CEuwysin(og) = i = C*Elulsin(0,t)

W= [(Ezccoszanot)+(LE2C2w§sin2(w0t)] ; WA= é=>

W(t) = sCE? = W, = cte

Ily a échange continuel d’énergie entre la bobine et le condensateur ; ’énergie
totale est constante.

¢+ Equation différentielle a partir de l’énergie totale

1 1. W duc | .. d
W=-Cu? +-L12:cte=>‘—:o=>cuC&+L1 =0;i=C=
2 2 dt dt dt
2
luc luc di i d?uc diuc 1
cuC“‘ HLC=S =0 = Lo+uc =0; LC—=S+u-=0; uc =0
it dt de de de2 LC

b) Oscillations libres amotties (R # 0)
¢ Equation différentielle de la tension uc du condensateur
Reprenons le circuit précédent et appliquons la loi des mailles lorsqu’on bascule

linterrupteur sur @



di . . d du( di d?u,
HLSH4RI=0;i= = =C—t
uc Ldt Ri=0;i 4= (Cu() C— dt C e

a2 u(‘ duc

uc +LC +RC— =0

dzuc R duc 1 . s . ,
—- + —— + —u¢ = 0|: Equation différentielle du second degré
dt L dt LC

sans second membre.

4 L.
I’équation caractéristique est : 82 + LS + —=0; A— o la résistance est

. L. .. . 4L L
dite résistance critique siA= 0 =R% === R =2 [=
C C

Suivant les valeurs de la résistance, on distingue 3 régimes pour le circuit (R, L, C)
uc Régime Uc

pseudo-périodique
(réistance faible)

N A A
|\/\/v
—>
T~T,

t 0 — >
Régime
critique (R = R¢)

¢ Energie totale
Il'y a des amortissements donc I’énergie totale diminue cours du temps.
Er() = 1L 2y ld by b adg (L ﬂ) OrLY 49 = Rim
2C dt dt  Cdt C dt C
dET
de

La diminution de 1'énergie électrique est égale a la chaleur dissipée par effet joule

= _ Ri?

dans le résistor.

2. GENERALITES SUR LE COURANT ALTERNATIF
SINUSOIDAL

2.1. Caractéristiques d’un courant alternatif sinusoidal

Un courant alternatif sinusoidal est une fonction du temps de la forme :

|i =1, cos(wt + cl))l




Ce courant est caractérisé par :
o son amplitude maximal ou

intensité maximale I ;

1 I
o safréquenceNouf:|N = —=|;
T
o sa pulsation w imposée par un
générateur  basse  fréquence
T
—

(GBF): |w= % = 21N

o son intensité efficace Iefr ou simplement I, mesuré par un amperemetre :

I
[g=1= 7

2.2. Déphasage et impédance d’un dipdle

Lorsqu’un dipdle D est traversé par un courant i(t)
alternatif sinusoidal de période T, alors la tension u(t) | II'
a ses bornes est alternative sinusoidale de méme

période T. Généralement, il existe une différence de u

phase entre le courant alternatif i(t) et la tension u(t).
Soient:i =1 cos(u)t + (I)l) = I\/zcos(oot + (1)1) et
u=U, Cos(u)t + ¢2) = U\/icos(wt + ¢2)
% Le déphase ¢ de u(t) par rapport 2 i(t) est la différence de phase :

¢ = (ot +¢,) — (0t +d,) = -,

Si @ > 0: u(t) est en avance par rapport 2 i(t)

Si P < 0:u(t) est en retard par rapport 2 i(t)
Sid =0:u(t) eti(t) sont en phase

. . Un U
% Limpédance Z du dipole D est le rapport : | Z = T = T

U : est la tension efficace aux bornes du dipdle, elle est mesurée par un

voltmeétre.
Un: peut étre mesurée par un oscilloscope.

Z.: sexptime ohm (). Elle dépend en général de la fréquence du

courant alternatif traversant le dipdle.

La loi Ohm en courant alternatif s’écrit :



2.3.  Puissance d’un dipdle en courant alternatif

Soit un dipdle AB traversé par un courant alternatif : i = V2 cos(wt).

Soit u = Uv2cos(wt + ¢) la tension alternative 2 ses bornes.
¢ Puissance instantanée du dipdle AB
P(t) = ui = U2 cos(wt+d) Iv2cos(wt) = 2UL cos(wt+d) Icos(wt)
En appliquant la relation : 2cosa. cosb = cos(a + b) + cos(a — b)
aveca=wt+ detb=d¢ on

trouve :|P(t) = UL cosQwt + ¢) + UI.cosd)|

On constate que P(t) est la somme de deux termes : un terme sinusoidal mais de

fréquence double a la fréquence du générateur et un terme constant.

¢  Puissance moyenne sur une période (ou puissance active)

: L. P 1 T
La puissance moyenne sur une période est définie par : [P, = T fO Pdt

P, =z J TUL cos2ort+¢p) +ULcosdp]de
1 0T 1 0T
P, = J, UL cosQCwt+d) dt + T Jy Ulcosddt =], +],

Or],=0=P,=],===2 ["dt = UlLcos¢ = [P,,= ULcos

UlLcos® : est appelé puissance active. Elle s’exprime en watt (W) ;
UI : est appelé puissance appatente. Elle s’exprime en voltampére (V.A) ;

cos® : est appelé facteur de puissance.
2.4.  Représentation de Fresnel d’une fonction

sinusoidale
Soit la fonction u = Uy, cos(wt + §). Pour
faire la représentation de Fresnel de cette

fonction, on utilise un axe (X'0x). La fonction

u sera représentée par un vecteur de norme
Uy, formant un angle ¢ avec 'axe (x'0x).
Application

1) Faites sur la méme figure la représentation de Fresnel pour les fonctions suivantes :
T
u, = 4sin (u)t + E) Uy = 3sin(wt)
2) Déduire la fonction : U = Uy + Uy ; On mettra W sous la forme :
u = Uy, cos(wt + @), expression o Uy, et ¢ seront déterminés.



2.5. Etude de quelques dipéles simples

a) Le résistor

Soit i = I, cos(wt) = [V2cos(wt) le courant traversant un résistor de
résistance R.

ug = Ri = RIV2cos(wt) = q):o;Z:U_m:Rl\/f:
Im W2
RI
—

Pour un tésistor, la tension uc 2 ses bornes et lintensité i qui le traverse sont en

phase. L’impédance d’un résistor est égale a sa résistance |¢ =0etZ = R|

b) L’inductance pure (bobine non résistive)

Soit i = I, cos(wt) = IV2cos(wt), le courant traversant une bobine non
résistive d’inductance L.

u, = L5 = —LIV2wsin(wt) = LIV2 cos (wt + 1) = U, = LiV2w;

¢=(wt+g)—mt=g s|d = g rad ;Z=%=Lw%=Lw;

Lol

. . R T
Pour une inductance pure, la tension ur a ses bornes est en avance de 7 par
rapport au courant i qui la traverse.

c) Le condensateur
Soiti = WZcos(wt) juc =3;i=8=q= fotidt = I\/ffotcos(u)t) dt

C dt
V2 V2 i1
q=Ksm(wt)=Tcos(wt—E)z —— __;___,
1 —7n/2
2 _r =Y _To_ 1
uC—chos(wt 2):ZC_ I 1 Cw L
Donc ug est en retard de n/2 par rapport 4 1. Cw
1
Z:— ’ :_E
Cw 2




3. OSCILLATIONS ELECTRIQUES FORCEES

3.1. Oscillations forcées

Le terme « forcées » renvoie a la présence d’un générateur basse fréquence qui
alimente le dipole (R, L, C). Ce générateur impose sa fréquence aux oscillations
du dipole (R, L, C), on dit que les oscillations sont forcées.
3.2.  Détermination expérimentale du déphasage du
dipdle (R, L, C) série

Réalisons le circuit suivant :

Fixons la tension efficace U du GBF et visualisons a 'aide d’un oscilloscope
bicourbe la tension u du GBF qui est égale a la tension aux bornes du dipole (R,

L, C) etla tension ur aux bornes du résistor.

- )
i e
u
[od Y2
L i R
Y1 || 1 4&
[
< uc uL ur

En fermant le circuit, on observe les oscillogrammes ci-dessous sur I’écran de
Poscilloscope pour une valeur N de la fréquence du GBF :

URr

At: estle décalage horaire entre u et Ug.

27
Soit ¢ le déphasage entre uet ug Ona: |(|) |= % At = wAt = 2rNAt

Les courbes montrent que U est en avance de § pat rapport a ug donc par rapport

a 'intensité du courant i.



Remarque :
Le déphasage ¢ entre u et i dépend de la fréquence du GBF.
o SiAt=0= ¢ =0: ondit que : u et Uy sont en phase
o Si At=§ = || =2?n*§=ﬂ: on dit que: u et Uy sont en
opposition de phase

. T 2t T TC .
o Si Atzz = M)l:?*Z:;: on dit que: u et ug sont en

quadrature
Application
On donne le circuit ci-contre : le génératenr
délivre une tension de fréquence . b est une @
inductance pure I. = 1 H.; C: est un . A C biL)
condensatenr de capacité C ; la résistance du N_ _E
résistor est R = 10 .

Les conrbes observées sur lécran de Loscilloscope sont reproduites ci-dessons.

1) Déterminer la fréquence f du courant.

2) Déterminer le déphasage de la tension déliveée par le générateur par rapport a lintensité
instantanée i(t) du conrant.

3) Déterminer la tension maximale U, aux bornes du génératenr et ['intensité maximale I, du
courant.

4) Déterminer limpédance Z du dipdle (R, L, C).

5) Donner les excpressions en fonction du temps de la tension anx bornes du génératenr et de
Lintensité du conrant.

Données : Sensibilité verticale sur les denx: voies : 5 V' div ; vitesse de balayage : 2,5 ms/ div



3.3.  Etude théorique du circuit (R, L, C) série en régime

sinusoidal forcé

a) Equation différentielle

Considérons le circuit suivant constitué d’un u uc

N L. . , L, Ur 4_L -
dipdle (R, L, C) série alimenté par un générateur =

basse fréquence de tension efficace U, de R L c

frequenfe N constgntes‘ . . @
En appliquant la loi des mailles, on obtient : T

. di
Ri+L=+31=u
dt C

b) Résolution de ’équation différentielle
Posant : i = [v/2 cos(wt) et u = UV2 cos(wt + ), I’équation différentielle
devient :

RI cos(wt) + Lol cos (wt +§) + CLcos (wt - g) = U cos(ot + ¢)

Résoudre I'équation revient a déterminer U et ¢. Pour cela, on utilise la

représentation de Fresnel.
) 1
UZ = R2I2 4 I [(Lco -3) ] Co
2 2 / Lol
22=%=R+(Llo-2) = N b 1.
RI

1
Lw——

1)? R ”
ZZ\/RZ—F(L(»—a) ; COS(IJ:Z ; tand = RC

Remarque :
¢+ Silw> é = W > Wy, alors leffet d’'inductance 'emporte sur leffet

de capacité : tand > 0 = ¢ > 0: u est en avance de ¢ suri.

¢+ Silm< é = w < Wy, alors leffet de capacité I'emporte sur Peffet
d’inductance : tand < 0 = ¢ < 0: u est en retard de —¢ sur i.

. SiLw=$ = W= W, alorstang =0= b =0: u et i sont en

phase : c’est la résonance.



4. ETUDE DE LLA RESONANCE EN INTENSITE

4.1. Etude expérimentale TY
1

Réalisons le circuit suivant :

Faisons varier la fréquence N du générateur tout en C

maintenant sa tension efficace constante. Notons 2

chaque fois la valeur du courant efficace I correspondant @ L ()
puis tracons la courbe I = f(w). 2 v

Al R

Résonance aigue

(faible résistance)

Résonance floue
(grande résistance) w

. 1
On constate que la courbe I = f(w) passe par un maximum pour: ®w = wy = [—
LC

En ce moment, on observe sur ’écran
de Toscilloscope les courbes de
variation de u et de ug:

On voit que u(t) et de i(t) sont en
phase (¢ = 0). C’est la résonance en
intensité. On dit que le dipole (R, L,
C) est un résonateur et le générateur

Résonance
(0 = w))

un excitateut.




4.2.  Etude théorique de la résonance

Prenons le circuit précédent et posons :

i = W2 cos(wt) et = u = UvZcos(wt + ¢).
U U
Dans cecas:ona I=E=—2
R2+(Lm—cim)

Comme U = cte, alors | : est maximale si son dénominateur est minimal :

:(Lw—cim)zoraw:\/?—c:wo . Z=R;

cos<p=§=1=>(p=0.

L’intensité maximale : IO = =

4.3.  Propriétés de la résonance d’intensité

A la résonance d’intensité, on a :

U
¢  Dintensité efficace du courant est maximale : 10: E
¢ w=wy= —==N=N,= —
0™ Vic 07 2/IC

¢ DLintensité du courant et la tension aux bornes du dipéle (R, L, C) sont

en phase (¢ = 0)

¢ L’impédance du dipole (R, L, C) est égale a R résistance totale du dipdle

(effet de I'inductance annule 'effet de la capacité).

4.4. Détermination de la bande passante

La bande passante en pulsation est I'ensemble des pulsations pour lesquelles la

. . - - . Io , . - X
réponse en intensité est supérieure 2 7= ; [ étant lintensité efficace du courant 2

la résonance.

Soient w; et w, les pulsations limites de la bande passante. Pour déterminer

w, et w, on écrit :

2 es(le-g) R
12 1\2
R+ (Lo ——) =2R%= (Lo-=) =R*=
Lw—i:RouLm—iz—Rﬂ
Cw Cw

LCw? —RCw—1=0: (1) ouLCw? + RCw—1=0:(2)
Pour les deux équations, ona: A = R?2C? + 4LC



On a une racine positive pour chaque équation :

__ RC+VA . _ —RC+VA
Pour@.w— e etpour@-m ==
/ - — _ ZRCH/A _RC+/A
Ww>0 >Dwn,=wetw; =0 = |0, Sie - St W=
La largeur de la bande passante est :
Aw R
AW =wy,—w; = - etAN= — = —
2 2zl
Al
IO ------------------- Q \
Lo f AV
V2 T
P Aw!
P o
0 Lo ! .
0 0 0, o,

4.5.  Facteur de qualité

L’acuité des courbes de résonances est caractérisée par le facteur de qualité QQ du

. . , . w( Lwg 1
circuit défini par :[Q = v = S = o
w wq

Le facteur de qualité n’a pas d’unité.
Plus Q est petit, plus la courbe est large et que le circuit est moins sélectif.

4.6. Surtension 2 la résonance aux bornes de la bobine et

du condensateur

1 U U —
UCZZCIOZC_:O orlozﬁﬁUczszUﬂ UC—QU
U 1 U U —
UL_ZLIO_L(DOE_C_%E_M_QUz UL—QU




SiQ > 1, ily a surtension aux bornes du condensateur et de la bobine. Cela
peut entrainer le claquage du condensateur (destruction de I'isolant).
Application
Un dipdle (R, L, C) renferme une inductance pure L = 0,10 H, une résiatance R = 12 (2
et un condensateur de capacité C. La tension délivrée par le générateur est :

u = 60v2cos(1007t).

1) QOuelle valenr fant-il donner a C pour qu’il ait résonance d’intensité ?
2) Calculer lintensité du courant de résonance. Calculer le facteur de qualité du circuit.

3) Calenler a la résonance la tension efficace aux bornes du condensateur.



P, : OSCILLATIONS MECANIQUES LIBRES

1. OSCILLATIONS MECANIQUES LIBRES NON
AMORTIES : ETUDE DU PENDULE ELASTIQUE

HORIZONTAL
Considérons un solide de masse m accroché
a lune des extrémités dun ressort 2 R
horizontal, de constante de raideur k (voir = +—
figure). | A
—

Le solide peut glisser sans frottement sur le :
plan horizontal. \Q% M
A Téquilibre le ressort n’est ni allongé ni
comprimé, la position du centre d’inertie G
du solide coincide avec l'origine de 'axe x’x. = -=---- — - >
Déplacons le solide de sa position
d’équilibre  suivant l'axe  x’x  puis
abandonnons-le sans vitesse initiale. Le solide oscille autour de sa position
d’équilibre.

1.1 Equation différentielle du mouvement du solide
Systeme : solide de masse
Référentiel du laboratoire supposé galiléen.

A Téquilibre du solide, ona:R+P=0
A un instant t du mouvement, on a d’apres le TCI:P+R+T=ma
R+P=0=T=md ; T = —kAS ;
OM =xi=A%;3="10M =i = —kd =mii = kx = mi =

X + —x = 0|Equation différentielle 'un mouvement oscillatoire non amorti.
m

1.2. Solution de I’équation différentielle

k . . , .
Posons w3 = o =X + w%x = 0; la solution de cette équation peut se mettre

sous la forme :|X = xpcos(wot + (D)l

_ k . _ m .
Wg = _[—| : pulsation propre ; Ty =2=n Tl période propre ;

P
0 — o o : requence pfOpr.

Xmet D : sont des constantes déterminées 2 partir des conditions initiales.




L’équation horaire de la vitesse est :

dx T
V=g X = —WoXpy-Sin(wot + @) = wexpy.cos (mot + o+ E)
I’équation horaire de 'accélération est :

_dv_ 2 _ 2 2
a=—= —0iXn. coc(wot+ @) = —wix | =
Siat=0,X = Xm,alors ona: X = XnCOS(wot)

s
X
Xm
t
0 >
Xm TO
—
1.3. Conservation de Pénergie mécanique du syst¢me

L’énergie totale du systeme (ressort + solide) est donnée par :
E(t)=Ec+Ep= %mv2+ %kx2
E ()= s m[-wqxy, sin(wt+ @)1+ > k[, cos(@,t+®)]?

E(Y)= % mw3x2 sin?(w,t+d)+ é kx? cos?(wot+D)= % kx? =cte

E(t) = %kxfn = constante

Le systeme (ressort + solide de masse m) est conservatif. Au cours du mouvement
du systeme, il y’a transformation mutuelle et permanent d’énergie cinétique en

énergie potentielle et vice versa.

Remarque : on peut retrouver ’équation différentielle du mouvement a partir de

I’énergie mécanique instantanée. En effet, ona:

.2 1 2 dE e .
E=—-mx"+-kx*=cte =— =0 =mxx+kxx=0=
2 2 dt

. k
x(mx+kx)=0 =[x+ —x=0
m

14. Oscillateur harmonique

;carx £ 0

On appelle oscillateur harmonique tout systéme physique dont un parametre 0
(abscisse, angle, tension électrique...) vérifie une équation différentielle de type :

0+ wi=0

Sile systeme oscille sur une droite, I'oscillateur est dit linéaire.



2. OSCILLATIONS MECANIQUES AMORTIES

Reprenons le pendule élastique horizontal précédent et supposons qu’il existe des

- -
forces de frottement représentées par une force f = -Av. (A est appelé:
coefficient de frottement).

2.1. Etablissement de ’équation différentielle
Le théoréme du centre d’inertie s’éctit :

5 - dv - -, > dv

R, +P+{+T=m— =R +P-Av +T=m—

o _ v dt dt

T=-kAl; OM=xi=Al; 2'==OM=5i ; f=%ki= R, +P-Aki-kxi =mii
En projetant dans 7, on a :—kx — Av = mj—: = mX+Ax+kx=0

. AL Kk
=X+—X+—x=0=
m m

X+ —x + szX =0 Equation différentielle d’un syst¢éme amorti.
m

2.2.  Les régimes du mouvement d’oscillation amortie
En tracant la courbe x = f(t), on constate une diminution de 'amplitude des
oscillations. Cela est diie a une perte d’énergie du systeme. Suivant les valeurs du

coefficient d’amortissement A, trois cas de figure se présentent :
o Si A est faible : le régime est dit pseudo-périodique. La pseudo-

pétiode est : |T = T, = 2/ m/k
o Si A est important : en écartant le solide, on constate qu’il revient a
sa position d’équilibre sans osciller : c’est le régime critique.
o Si A trés important, le régime est dit apériodique.

X X X

T=T,

v

t

O ~~
Régime | Régime critique O . L
pseudo-périodique Régime apériodique

2.3. Variation de I’énergie mécanique

Déterminons la variation de I’énergie mécanique du systeme précédent : AE,
1 1 dE m d kd v
En=-mv?+-kx!=>-—2=——vZ4+-—x2=mv—+kx—=
2 2 dt 2 dt 2dt dt dt

= dE,, = —fvdt = AE,, = —fvAt = —fd = W(f) ;
AE,, =-fd=W(f) <0




On constate que I’énergie mécanique se dégrade au cours du temps. Cest cette
perte d’énergie qui justifie la diminution d’amplitude x;, des oscillations au cours
du temps et donc "amortissement observé.

3. ANALOGIE

GRANDEURS

MECANIQUES ET

GRANDEURS ELECTRIQUES

Pendule élastique

Circuit (L, C)

Energie potentielle : EP:%kx2

2
. .o, 1 dx
Energie cinétique : Eczzm (—d )
t

- . T1
Energie électrostatique : E.= e q?

Energie magnétique : E, = % L (%)

Equation différentielle et solution

’k
Avec ) =_[—
m

=0 ; x= X, cos(wyt+P)

Equation différentielle et solution

dzq 1
—+—q=0
d  IC !

q = Q,_ cos(w,t+)

1
Avec )= [—
IC

Ces relations conduisent aux analogies entre les grandeurs mécaniques et

électriques ci-dessous :

k<—>l

m < L
C

X q v 1




Py, : INTERFERENCES LUMINEUSES

1. PHENOMENE D’INTERFERENCE DE LA LUMIERE

1.1. Interférence en lumiére monochromatique

a) Expérience des fentes de Young

Une soutrce S de lumiére
monochromatique envoie
sur une plaque opaque
percée de fentes tres fines S

Fiet Fa. E

Un écran est placé derriere
la plaque. La lumiere est
diffractée au niveau de

chacune des fentes.

b) Observations

Sur ’écran, on voit une zone ou les
deux faisceaux issus de Fiet Fa se
superposent.  Cette zone est
appelée champ d’interférence.
Dans ce champ on voit une
alternance de fines bandes sombres
et claires (brillantes), rectilignes,
paralleles, équidistantes appelées

franges d’interférence.

c) Interprétation

Frange centrale —»

Plaque opaque Ecran

Fy

F,

Ecran

Frange —»
sombre

(brillante)

La présence des franges d’interférence montre que la lumiére est constituée

d’ondes.

¢ Enun point M d’une frange claire se superposent les ondes lumineuses

issues des fentes Fy et Fa, arrivant en phase : les interférences sont dites

constructives.

¢ En un point M d’une frange sombre se superposent les ondes

lumineuses issues des fentes Fy et F2 arrivant en opposition de phase :

les interférences sont dites destructives.



d) Conditions d’interférence

Pour obtenir des franges d’interférence, il faut deux sources cohérentes. Deux
sources sont cohérentes si :
» eclles émettent des vibrations de méme période (on dit quelles sont
synchrones) ;
» elles présentent une différence de phase constante ;
»  le rapport de leurs amplitudes est constant.
1.2. Etude théorique du phénoméne d’interférence
Pour déterminer les positions des franges, on utilise un axe x’Ox dont I'origine O
coincide avec le milieu de la frange centrale.

- Frange
centrale

a) Expression de la différence de marche

Soit un point M d’abscisse x sur la zone d’interférence. Soient deux rayons
lumineux issus de Fi et F2 qui arrivent en M(x).

La différence de marche 6 A
entre ces rayons lumineux
représente la différence des

chemins optiques parcourus

X
par ces deux rayons pour
arriver en M. I 0]
> !: D »|Ecran



2 a\ 2

& —d? = (d, — d))(d, + d;) = (x+%) - (x-3) =2ax
ax

x&DetakD=d, +d; =2D = 28D =2ax =8 = ;5

b) Position des milieux des franges claires

»  Un point M(x) appartient au milieu d’une frange claire si la différence de

marche & entre les ondes qui artivent en M est : ; k €Z
AD

§="=K\ =[x, = k—

D a

Sik =0 = x = 0: M est au milieu de la frange centrale ;
Sik=1 =x= )L:D > 0 : M est au milieu de la 1¢ frange claire au-dessus de
la frange centrale.
Sik=—-1=x= —}\:D < 0: M estau milieu de la 1¢< frange claire en

dessous de la frange centrale.
»  Un point M(x) appattient au milieu d’une frange sombre si la différence

de marche § entre les ondes qui artivent en M est :

8=(k+%)k ikez; 5= (k+)a==|x= (k)2

Sik=0=x= % > 0 : M est au milieu de la 1¢r frange sombre en haut de la
frange claire
Sik=-1 =x= —% < 0 : M est au milieu de la 1¢ frange sombre en bas

de la frange sombre
c) Linterfrange
L’interfrange i est la distance qui sépare les milieux de deux franges consécutives
de méme nature.

Soient deux franges consécutives de méme nature de positions respectives

Xy et Xppq- 1= Xy4q — Xg|; 1 Sexprime en métre (m).

¢ Détermination de Pinterfrange i a partir de deux franges claires
consécutives

AD AD . AD __D
X = k— etxy,, = (k+ 1):z1=xk+1—xk=:$ i=—
a

¢ Détermination de Pinterfrange i a partir de deux franges sombres
consécutives



Xg = (k+§)%D et Xpyq =(k+1+§)%‘3=

= (Y ()22 [

2/ a a a
d) Ordre d’interférence
Les positions des franges claires sont données, en fonction de Iinterfrange i par :

8 -
On appelle ordre d’interférence le rapport :| p = P TP T

L’ordre d'interférence d’une frange claire est :|p = k

1
L’ordre d’interférence d’une frange sombre est : [p = k+ >

1.3. Interférence en lumiére blanche
Avec le dispositif des fentes de

Young, lorsqu’on remplace la
source de lumiere
monochromatique par une source
de lumiére blanche, on observe sur
Iécran, des franges pratiquement

rectilignes. A chaque radiation

monochromatique correspond un systeme de franges et tous ces systemes
s'ajoutent en intensité. Au niveau de la frange centrale (blanche), la différence
de matche est nulle pour toutes les radiations. Si on s'écarte de la frange centrale,
on observe des franges irisées (colorées) et a chaque valeur de la différence de

marche correspond une teinte déterminée.

2. LES ONDES ELECTROMAGNETIQUES

Les ondes électromagnétiques sont les ondes qui se propagent dans le vide a la
méme vitesse que la lumiére.

Les ondes E.M. portent des noms différents selon le domaine de fréquence
auquel elles appartiennent. Elles véhiculent d’autant plus d’énergic que
leurs fréquences sont élevées. On parle de lumicre ou de domaine visible pour les

ondes E.M. que I'ceil humain est capable de détecter.



La lumiere est une onde électromagnétique, tout comme les rayons X, les rayons
gammas et les ondes radios. Notre ceil ne peut percevoir les ondes
électromagnétiques que si elles ont une longueur d'onde entre 400 nm et 800 nm.
Les ondes dans cette plage font donc partie du visible, les autres sont invisibles.

Fréquence (Hz) Ultraviolet
10-12 4Ty Ao 10w /,"' f(Hz)
{ myonX Lo A0 L7 x 104
109 —3x '101?
| ultraviolet | .-~ 500 - 6% 1014
10-6 f—visible 3. 1014
| Infrarouge | . 600 5% 1014
103 f——— 3 x 101
1 L3xa0s N, 7007
| ondes radio —4x 1014
103 4———13 x 105 "800
AN
Longueur d’onde (m) 1.{1'1]1'1)‘“_
Infrarouge
Application

On considere le dispositif des fentes de Young. La distance entre les sources Sy et Sy esta =1
mm. La distance des sonrces a écran est D = 1,20 .

1) La source primaire émet une radiation monochromatigue de longuenr d'onde A = 0,60 um.
a) Caleuler Uinterfrange i.

b) Calenler la distance sur lécran qui sépare les milienx des 5 franges obscures de part et
d'auntre de la frange centrale.

2) La sonrce émet simultanément denx: radiations de longuenrs d'onde respectives 0,60 ym et
0,45 pm. A quelle distance dn milien de la frange centrale se produit la premiére fois coincidence
entre deux franges brillantes correspondant anx denx radiations ?



Pi;: EFFET PHOTOELECTRIQUE

1. MISE EN EVIDENCE DE I’EFFET
PHOTOELECTRIQUE

1.1. Expérience de Hertz

Considérons un électroscope dont le plateau est en zinc.

Rayons UV
Plateau en zinc

Electroscope Chargé ElectrOSCOpe déchargé

On constate que :
¢  En chargeant I’électroscope négativement et en éclairant le plateau avec
la lumiere UV, I’électroscope se décharge.
¢ En chargeant positivement I’électroscope et éclairant le plateau,
’électroscope ne se décharge.
1.2.  Interprétation
Drapres cette expérience, on peut dire que les rayons UV attirent les charges
négatives (électrons). Ce qui fait que ’électroscope se décharge dans le cas ou il
est chargé négativement.
1.3.  Définition de Peffet photoélectrique

L’effet photoélectrique est Iémission d’électrons par un matériau

convenablement éclairé.
11 a été découvert en 1889 par le physicien allemand Heinrich Rudolf Hertz.

2. INTERPRETATION DE L’EFFET

PHOTOELECTRIQUE
2.1. Théorie d’Einstein

L’effet photoélectrique ne peut pas étre expliqué par I'aspect ondulatoire la

lumicre. Pour lexpliquer, Albert Einstein propose en 1905 la théorie


https://fr.wikipedia.org/wiki/Heinrich_Rudolf_Hertz

cotpusculaite de la lumiére : la lumicre est constituée de particules appelées
photons de masse et de charge nulles, se déplacant a la vitesse a la lumiere.

lc =3.10° m.s!

Un photon possede de Iénergie appelée quantum d’énergie proportionnelle a

la fréquence v de la radiation correspondante.

; h est la constante de Planck : h = 6,62.10°* J.s
E=hv=hs=h$ ;|E=hS
T A s

2.2. Condition d’extraction des électrons

L’expérience montre que certains rayonnements ne peuvent pas extraire des
électrons sur n’importe quel métal. Pour extraire des électrons il faut fournir au

métal une énergie au moins égale au travail d’extraction ou de liaison de ’électron.

W, =hvy = h—
Ao

Vg et Aq sont appelés respectivement la fréquence seuil et la longueur d’onde
seuil du métal. Ce sont des caractéristiques du métal.
Considérons un photo d’énergic W =hv envoyé sur un métal d’énergie
d’extraction W = hvy,.
¢ Si W<W; = v<vgoulA>2Ay, alors il n y a pas deffet
photoélectrique.
¢ SiW=W; =V =v50ul = Ay, alors il y a effet photoélectrique mais
I’électron reste immobile 4 la surface du métal.
¢ SiW>W, =V >vjoud <A, alors il y a effet photoélectrique et
les électrons acquiérent une énergie cinétique qui est égale a I’énergie

supplémentaire. Ec = %mv,znax =W-W,=h(v—-vy) =

1
Emvrznax = h(\) - VO)

Application
Une cellule photoélectrique comprend une plaque métallique recouverte de césium. 1. 'énergie
d'extraction d'un électron de ce métal est Eq = 1,88 eV. Elle est éclairée successivement par
denx radiation de longuenrs d’onde 2, = 700 nm et A, = 540 nm.
1) Préciser dans quel cas on a effet photoélectrique.
2) Calenler la vitesse maximale des électrons extraits du métal par la radiation permettant leffet

photoélectrique.



3. DUALITE ONDE CORPUSCULE DE LA LUMIERE

Les phénomenes de réflexion, de réfraction, de diffraction et d’interférence
lumineuse traduisent ’aspect ondulatoire de la lumiere. La lumiére est une onde
électromagnétique qui se propage a la vitesse ¢ = 3.10%m.s™! dans le vide et dans
Pair.

Le phénomene d’effet photoélectrique traduit I’aspect corpusculaire de la lumicre.
La lumiere est donc a la fois onde et corpuscule. Elle est a la fois un phénomeéne
continu sous son aspect ondulatoire et un phénomene discontinu sous son aspect
corpusculaire.

4. APPLICATIONS

Détecteur de niveau, dispositif de sécurité des banques, fournir de I'électricité

(cellule photovoltaique).



P, : NIVEAUX D’ENERGIE DE I’ATOME

1. SPECTRES ATOMIQUES

1.1. Spectre d’émission et spectre d’absorption

Les atomes d’un gaz sous faible pression peuvent émettre une lumicre dont le
spectre est constitué de raies fines. On patle de spectre d’émission.

Si on place le gaz précédent sur le trajet de la lumicre blanche, le spectre apres la
traversée de la lumicre, montre qu’une partie des radiations de la lumicre blanche
est absorbée. On parle de spectre d’absorption.

On remarque que les longueurs d’onde des radiations manquantes sont égales aux
longueurs d’onde du spectre d’émission.
¢ Les spectres atomiques d’émission sont caractéristiques des atomes qui
les produisent. Ils sont constitués de raies correspondant a des radiations
monochromatiques précises.
¢ Les spectres d’absorption sont constitués de raies noires dans le spectre
continu de la lumiére blanche.
¢ Les spectres d’absorption et d’émission sont des spectres de raies. Ils
sont discontinus.

1.2.  Interprétation des spectres d’émission et
d’absorption
Pour expliquer 'existence des spectres de raies bien définies, le physicien Danois
Niels Henrik David Bohr introduit en 1913 les postulats suivants :
v I1’atome ne peut exister que dans certains états d’énergie bien définis ;
chaque état est caractérisé par un niveau d’énergie ;
V' Les variations d’énergie de I’atome sont quantifiées ;
v Un photon de fréquence v est émis ou absorbé lorsque I’atome effectue

une transition entre deux niveaux d’énergie ;

2. APPLICATION A I’ATOME D’HYDROGENE

2.1. Niveaux d’énergie de I’atome d’hydrogéne

L’atome d’hydrogene est le plus simple des atomes. Il est constitué d’un électron
gravitant autour d’un proton pour lisotope le plus abondant. Le niveau d’énergie
d’ordre n de cet atome est donné par la relation :

_ 13,6 Eo _
E,=- = =— =2 (V) = Ey=136¢V

n2
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n: est appelé nombre quantique principal, il peut prendre que des valeurs
entieres:1;2;3;4 ...
e Sin=1=E;=-13,6eV: cest le niveau d’énergic le plus bas :
I’atome est a ’état fondamental, état le plus stable.

o Sin=w;=E =E, =0, "atome est ionisé.

A En(CV)

0 E« étationisé

054 |— FEs
0,85 ———Fa4

états excités
151 ———F;

34 F,

-13,6 L E; état fondamental

o  Silatome passe d’un niveau m d’énergie Ep, 2 un niveau p d’énergie Ej,
(m > p), alors il émet un photon d’énergie égale a : hvy, .

A

Enl—

Emission d’un photon
d’énergie : hump

Eob—ro

Ey E 1 1 <

p?  m? m= p mp

O  Silatome passe d’un niveau p d’énergie E, 4 un niveau q dénergie Eg
(p < @), alors il absorbe un photon d’énergie égale a : hvyg.
E A
T Absorption d’un photon
E, d’énergie : hug,




2 2 2°

_ _ By By _ 11y _ _
AE—Eq-Ep—-q—+p——E0(p g)—hv =h<

Remarque :

v" Pour ioniser 'atome d’hydrogene a partir de son état fondamental, il faut

au moins lui fournir une énergie égale 2 13,6 eV.
En cffet: AE = Ep, — B, = 0 — (- 22) = E, = 136 eV.

12
v Lorsque l'atome d’hydrogéne regoit un photon dont Iénergie est

supérieure a I’énergie d’ionisation de I'atome a I’état ou il se trouve, ce
photon est absorbé : une partie de son énergie sert a ioniser I'atome,
Pautre est transférée a I’électron de I'atome sous forme d’énergie
cinétique.

v Lorsque l'atome d’hydrogéne recoit un photon dont Iénergie est

inférieure a ’énergie d’ionisation de I’atome a I’état ou il se trouve, ce
photon ne peut étre absorbé que si son énergie correspond exactement
a Dénergie de transition entre le niveau E, ou se trouve l’atome
My h : 52 .

d’hydrogene et un niveau d’énergie E, (p > m).

v Si un atome d’hydrogéne de niveau d’énergie E, regoit un électron
ayant une énergie cinétique E¢, ’atome peut passer a un niveau d’énergie
supérieure Ep si Ec 2 AE = E — E,.

. . . . s ro__
I’électron « rebondit » avec une énergie cinétique :|Ec = E¢c — AE

Application

1) Calculer la fréquence de la lumiére absorbée par I'atome d’hydrogéne lorsqu’il passe du niveau
fondamental an nivean excité n = 3.
2) Calenler l'énergie qu'il faut fournir a l'atome d’hydrogéne pour lioniser dans les cas suivants :

a) latome se trouve a ['état fondamental ;

b) latome se trouve an nivean d'énergie Es.
3) On fournit successivement a l'atome d’hydrogéne pris dans son état fondamental des photons
d’énergie respectives : 6 el ;12,75 ¢V et 18 el”. Dans quel(s) cas le photon est-il absorbé ?
Dans le cas on l'atome est ionisé, calculer I'énergie cinétique de ['électron.
4) On excite un atome d’hydrogéne pris dans son état fondamental par un électron ayant une

énergie cinétique E- = 12,53 1. Quel nivean d’énergie occupera I'hydrogene juste aprés le choc
avee lélectron 2 Calenler la vitesse de rebondissement de ['électron apres le choc.
On donne masse de Pélectron m = 9,1.10”" kg,



2.2. Série de raies d’émission de ’atome d’hydrogéne

Une série de raies correspond a 'ensemble des radiations émises lorsque 'atome
passe des différents niveaux excités p a un méme niveau n avec (0 < p).

Pour I’hydrogeéne, on a entre autres, les séries de raies de Lyman (n = 1), de
Balmer (n = 2), de Paschen (n = 3)...

A E

S —
: Série de Bracket (IR)

Eal-+e--tr-{1-- semeoe-
B { Série de Paschen (IR)

I B 10 A Bt A
. ! Série de Balmer (Visible, UV)

2 B S o R B LT

Série de Lyman (UV)

By

NB : Dans une série, la raie ayant la plus grande fréquence dans le vide, est
appelée raie limite, et la longueur d’onde correspondante est appelée longueur
d’onde limite de cette série.

Calcule des longueurs d’onde limites des séries de Lyman, Balmer et

Paschen.
_ hc _ _ Eo _ Eo _ th
thim_}‘lim—lEn_Eml—|_n_2 —n—2=> Mim = 0 E_o

Pour la série de Lyman :n = 1 = Ay, = = = 9110” m = 91 nm
0

Pour la série de Balmer: n =2 = A, = ALE =365.10" m = 365 nm
0

9hc
Eo

Pour la série de Paschen : n =3 = Ay, = 821.107 m = 821 nm

3. APPLICATIONS

Les spectres atomiques sont utilisés pour la détermination :

- De la composition chimique des corps ;
- De la température des étoiles,

- De la composition chimique de la couronne solaire.



Pis : REACTIONS NUCLEAIRES

1. LE NOYAU ATOMIQUE

1.1. Constituants du novau

Le noyau atomique est constitué de nucléons, particules qui sont :
¢ des protons, de masse m, = 1,67.10% kg et de charge e = +1,6.10" C;

* des neutrons, de masse m, = 1,67.10? kg ; les neutrons n’ont pas de charge.
1.2. Nucléide

Un nucléide est un type d'atome ou de noyau atomique caractérisé par le nombre

de protons et de neutrons qu'il contient.

Un nucléide est symbolisé par AX

X : étant le symbole de ’élément chimique cortespondant au nucléide ;

A : le nombre de masse ou nombre de nucléons du nucléide ;

Z : le numéro atomique ou nombre de charge ou nombre de protons de ’élément

chimique correspondant au nucléide.

Si N est le nombre de neutrons du nucléide, alors on a :

1.3. Notion d’isotopes

On appelle isotopes des nucléides ayant le méme nombre protons et des nombres
de nucléons différents.
BC; BC et 2C : sont des isotopes du carbone.
TH ; {H et [H : sont des isotopes de I’hydrogéne.
NB : un isotope est un noyau qui se distingue des autres noyaux d’un méme
élément chimique par son nombre de nucléons. Exemple : le carbone 14 est un

isotope.

2. NOYAUX, ENERGIE ET MASSE

2.1. Relation d’Einstein : équivalence masse-énergie

D’apres Einstein, la masse est une forme d’énergie. Un systéme massif au
repos posséde une énergie due a sa masse, appelée énergie de masse : Elle

est donnée par :
E : énergie de masse (J)
m : masse (kg)
c : vitesse de la lumiére dans le vide : ¢= 3.10* m/s


http://fr.wikipedia.org/wiki/Atome
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2.2. Unité de masse atomique

L’unité de masse atomique notée u est égale au 1/12 de la masse du carbone 12.

[1u=1,66.107 kg|

L’énergie correspondant a 1 u est environ égale a 931,5 MeV.

[1u =931,5 Mev/?|

Remarque : la masse d’un noyau 5X est sensiblement égale 2 A.u
Exemple : m('{C) = 14u = 2,324.10% kg
2.3. Lois de conservation

Soit une réaction nucléaire quelconque d’équation :
[\1 [\2 1\3 A4
-
lel + 22X2 Z3X3 + Z4X4

¢ Loide Soddy
Enoncé : Lors d'une transformation nucléaire, il y a conservation de la charge

électrique et du nombre de masse A. Cette loi ou ces lois permettent d’équilibrer
A+ A=A+ A,

Lo+ Zy =15+ 7,

¢ Loi de conservation de I’énergie

I’énergie d’une particule est égale a la somme de son énergie cinétique et de son

une réaction nucléaire : {

énergie de masse.

m;c? + Ec(Xy) + myc? + E¢c(X;) = myc? + Ec(my) + myc? + E¢(m,) =

[(Ec(X3) + Ec(X)] — [Ec(Xy) + Ec(X2)] = —[(m3 + m,) — (m; + m;)]c?
= |AEC =- Amc2|

o SiAm <0 :ily aperte de masse, donc dégagement d*énergie : la
réaction dégage de I’énergie.

o SiAm >0: ily a transformation d’énergie cinétique en masse : la
réaction absorbe de I’énergie.

Remarque

Toute désintégration s’accompagne dune perte de masse. Lors dune
transformation nucléaire, I’énergie est libérée sous deux formes : cinétique et
rayonnante.

L’énergie libérée lors de la transformation nucléaire :
éin + é;XZ — 2§X3 + 24X4, peut étre calculée de deux maniéres :
4

o  Soit en utilisant la variation de masse Am :


https://fr.wikipedia.org/wiki/Charge_%C3%A9lectrique
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E = Amc?*= [(mX3+ mX4) - (mX1+ sz)] c?

o  Soit en utilisant les énergies de liaison des noyaux :
|E = [E,(X,) + E,(X)] - [E,(X5) + E,(X)]|
¢ Loi de conservation de la quantité de mouvement

— = = =
|m1V1 + myvy, — Ms3Vy + m4V4|

3. STABILITE DES NOYAUX

3.1. Défaut de masse d’un noyau

A s s R
La masse d’un noyau X est inférieure a la somme des masses de chacun de ses

nucléons pris isolément. Cette différence de masse est appelée défaut de masse

Am. Am = Zmy+ (A - Z)m,— m(%X)

3.2 Energie de liaison d’un noyau
I énergie correspondant au défaut de masse Am d’un noyau 5X est appelée
énergie de liaison ou de cohésion. C’est I’énergie qu’il faut fournir 4 un noyau

au repos pour le dissocier en nucléons isolés et immobiles.

E, = [ZrnP + (A-Z)m,— m(%X)]CZ = Am.c?

3.3. Energie de liaison par nucléon d’un noyau

L’expression de I’énergie de liaison par nucléon notée E, d’un noyau %X est:

Ep
E, ==
a A

Plus E_ est grande, plus le noyau est stable.

» SiE, =8 MeV, le noyau est stable.
» SiE, <8MeV, le noyau est instable.

De deux noyaux, le plus stable est celui qui a I’énergie de liaison par nucléon la

plus grande.
Application

Calenler en Mel” énergie de liaison par nucléon d'un noyan d’nraninm 238. Conclure.
On donne : m(*5U) = 238,054 ; m,=1,007276 u ; m,= 1,008665 u ;
1 u=931,5 Mel//2=1,66.10% kg



4. RADIOACTIVITE NATURELLE
TRANSFORMATION SPONTANEES

En 1896, Henry Becquerel découvtit que l'uranium et ses composés

émettaient continuellement un rayonnement capable de traverser la maticre.
Poursuivant les travaux de Becquerel, Pierre et Marie Curie ont donné a ce
phénomene le nom de radioactivité.
4.1. Définition
La radioactivité est la transformation spontanée (désintégration) des noyaux
atomiques instables (radioactifs) en d’autres noyaux plus stables avec émission
de particule et de rayonnement radioactifs.
4.2. Caractéristiques
Les transformations radioactives sont :
o Spontanées : clles se produisent seules sans aucune intervention,
o Aléatoires : I'instant de désintégration d’un noyau ne peut pas étre prévu,
o Inéluctables : rien ne peut empécher ou modifier leurs déroulements,
4.3. Les types de particules (ou rayonnements)

radioactifs
A Taide d’un champ électrique (ou magnétique), on peut séparer les différentes

particules émises par une substance radioactive (radioélément).

B'a 4 B-

Ecran

Plomb ——
Substance radioactive

Analyse d’une substance radioactive par un champ
magnétique

Les déviations observées montrent qu’il existe 4 types de particules ou 4 types de
radioactivité :
¢ la particule & (noyau d’hélium 3He), il est trés ionisant mais peu
pénétrant (une feuille de papier peut larréter) ;

¢ laparticule B~ (électron _J€), il est peu ionisant mais trés pénétrant ;



¢ la particule B* (positon ou antiélectron ‘1’e), il ales mémes propriétés
que B~ ;
¢ le rayonnement y : (photons), il est excitant et tres pénétrant. Cest le
rayonnement le plus dangereux biologiquement.
4.4. Equations bilans des réactions nucléaires
spontanées
a) Radioactivité «(3He)
Le noyau pere est trop lourd, il contient trop neutrons et trop de protons (A >
200).

7X — 3He + 55Y
Noyau pere Noyau fils

b) Radioactivité B+ (Je)
Le noyau pere expulse un positon (particule de charge +e et de méme masse que
Iélectron). Un proton du noyau se transforme en neutron et I’émission du

positron s’accompagne de ’émission d’un neutrino (patticule de masse nulle).
72X — e + LAY+
Noyau pere Noyau fils

¢) Radioactivité B~ (_Je)
Le noyau pére expulse un ¢lectron. Un neutron du noyau se transforme en
proton, et ’émission de ’électron s’accompagne de ’émission d’un antineutrino
(particule de masse nulle).

2X — e + LAY+
Noyau pére Novyau fils

d) Radioactivité y
La radioactivité y peut accompagner les radioactivités o, B+, B~. Le noyau fils est
émis dans un état excité, alors il revient a ’état fondamental avec émission d’un

rayonnement électromagnétique Y.

A A-4 4 A4 4 A-4
Exemple : ZX — Z-ZY* + ;He ;0 z2Y Z_2Y+Y




NB:
Une famille radioactive est 'ensemble des nucléides issus d’un méme noyau pere.

Famille du Thotium : 232Th Famille de ’'Uranium : 238U
Famille de PActinium : 25U | Famille du Neptunium : 2"Np
Application

Le radinm *33Ra se désintigre spontanément en émettant une particnle &. 1e noyan fils obtenn

est un isotope du radon Ra.
1) Donner la composition du noyau de radium 226.
2) Ecrire l'équation de désintégration dun noyan de radinm 226.
3) Calculer en Mel” puis en joule Iénergie libérée lors de la désintégration d'un noyau de radinm
226.
On donne :
m(*3§Ra) = 225,97786 u; m(Rn) = 221,97108 u; m(}He) = 4,00151 u ;
1u=931,5 MelV/e?; 1 u=1,66.107 kg,

5. LOI DE DECROISSANCE RADIOACTIVE

5.1. Expression du nombre de noyaux radioactifs en
fonction du temps

A TS N . o .
Soit ;X un noyau radioactif qui subit de maniére spontanée une réaction nucléaire

d’équation :

A _
‘%X — AiY + rayonnement (o, ﬁt £7)
t=0 Ny 0 0
t#0 |Np—x X X
Nj : est le nombre de noyau initialement radioactifs.
N = Np-x: estle nombre de noyau radioactifs a I'instant t.
X: est le nombre de noyaux désintégrés a I'instant t.

La variation du nombre de noyaux est proportionnelle au nombre de noyaux
N-Ng

AN
restants. —— = AN=>|—
t—tp At

= N

A : est constante positive appelée constante radioactive. C’est une caractéristique

du noyau 5, X.
Y Z
AN

= =N :%:—Adt =[faN = —t + K |




At=0,N=N,=K=¢nNg= ¢n(~) = At =[N = Nye ]
0

1
N = 7| : est la durée de vie moyenne.
5.2. Période radioactive ou demi-vie

La pétiode radioactive ou demi-vie T est la durée au bout de laquelle la moitié des
noyaux radioactifs initialement présents se sont désintégrés.

N N 1
At=T,ona:N=7° = Nye 2T =7° =>—7\T={’n;=—ln2:>
fn 2
T=—
A
5.3. Représentation graphique de la courbe N = f(t)
Au bout d’un temps t = nT, on a:
Anln2
— N-AnT — - = -nln2 _ 2" _ _No__ No
N—Non —Noe A —Noe nin —Noe n —e[nzn_z_n,
_No
N=%

No/ A R i B
N()/4 """""""""""" ;‘ """"""""""
Ny /[--eeemeemmmmeeeees oo S "t
0 - - >
0 T 2T 3T
54. Activité radioactive

L’activit¢ A(t) d’une substance radioactive est le nombre de désintégration par
unité de temps.

A(D) = —iN(t) ;A = =5 (Noe™) = ANge™ = AN(t) =

A(t) = AN()
Aty A(t) =A, = AN, = |[A(t) = Age™




L’activité s’exptime dans le ST en Becquerel (Bq).
1Bq = 1 désintégration/s |
1 Ci=3,7.10" Bq

On utlise couramment le Cutie (Ci) ;

6. REACTIONS NUCLEAIRES PROVOQUEES :
RADIOACTIVITE ARTIFICIELLE

6.1. Fission nucléaire
La fission est la rupture d’un noyau lourd en deux noyaux plus légers sous ’action
d’un neutron lent. La fission produit des neutrons.

235 )
Exemple : U+ n —
92 0

94
0%e + 3ot 2ln

Sr : strontium et Xe : xénon
NB
v Un noyau est dit fissile s’il peut subir une fission nucléaire.
v Un noyau est dit fertile s’il peut engendrer un novau fissile.
Application
1/ Calenler en Mel” énergie libérée par la fission d'un noyan d’uraninm 235 suivant la

o235
réaction : U +
92

2/ En dédnire Iénergie libérée par nucléon lors de cette fission.
3/ Caleuler Pénergie libérée par la fission d’un gramme d’uraninm 235.
On donne :
35 _ . 4\ . 145 _ .
m(C5U) = 234,9935 u; m(|S1) = 93,8945 u; m("5;Xe) = 139,8920
my = 1,0087 u; 1 u=931,5 Mel//2=1,66.107 kg.

6.2. Fusion nucléaire

La fusion nucléaire est l'union de deux noyaux légers qui engendre un noyau plus

1 140 94 1
o uXet [ Sr+2in

lourd.
Fusion de deux noyaux de deutérium :

20002 3 1 20142 3r7.1
1H+1H — ZHC“FOH 5 1H+1H — 1H+1p

Fusion d'un noyau de deutérium et d'un noyau de tritium :

2
(H+H — jHet+{n



https://fr.wikipedia.org/wiki/Fission_nucl%C3%A9aire

Application
On fait la fusion d'un noyau de dentérinm et d'un noyau de tritinm. 11 se forme de Ihélinm 4 et
une émission d'une antre particnle.
1/ Ecrire l'équation bilan de la réaction de fision.
2/ Calenter en MeV” énergie libérée par cette fusion. En déduire énergie libérée par nucléon
lors cette fusion.

On donne :
m(GH) = 2,0160 u; m(GH) = 3,0247 u ; (5He) = 4,0015 u ; m,= 1,0087 n.
6.3. Comparaison des réactions de fission et de fusion

nucléaires

Pour réaliser la fission nucléaire, on fait la capture d’un neutron « lent » par un
noyau fertile qui devient fissile.
La réaction de fusion nucléaire nécessite une haute température pour se produire.
Les réactions de fission et de fusion nucléaires sont tres exoénergétiques :

¢ Un noyau d'uranium 235 libére 200 MeV soit 1 MeV par nucléon ;

¢ Le cycle proton-proton (série de réactions thermonucléaires dans les

étoiles) libere 6 MeV par nucléon.

Contrairement a la fission nucléaire, les produits de la fusion eux-mémes
(principalement de I’hélium 4) ne sont pas radioactifs, mais lorsque la réaction
utilisée émet des neutrons rapides, ces derniers peuvent transformer les noyaux
qui les capturent en isotopes pouvant étre radioactif.

7. APPLICATIONS ET CONSEQUENCES DE LA
RADIOACTIVITE

7.1 Applications
La radioactivité offre de nombreuses applications dont la datation des objets
archéologiques et la radiographie en médecine. La fusion nucléaire est a l'origine
de la bombe H et la fission nucléaire a celle de la bombe A.
Les réactions nucléaires ont pour application principale la production d’énergie
électrique dans les centrales nucléaires.

7.2.  Conséquences
En traversant la matiére, les particules o et 3, ainsi que le rayonnement vy, émis par
les corps radioactifs, provoquent des ionisations responsables de destructions
cellulaires pouvant entrainer la mort.
A faible dose, ils sont la cause de divers troubles, d’une augmentation des risques
de cancers et peuvent engendrer des anomalies génétiques.







