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P8 : INDUCTION MAGNETIQUE – ETUDE D’UN 

DIPOLE (R, L) 
 

1. INDUCTION ELECTROMAGNETIQUE 

1.1. Définition du flux magnétique 

Par définition, le flux magnétique à travers un contour délimité par une surface S 

est le nombre de lignes de champ magnétiques qui traversent ce contour fermé. 

Son expression est : ϕ = B⃗⃗ .S⃗  = SB⃗⃗ .n⃗  = B.S.cos(B⃗⃗ ,n⃗ )  

Le flux est une grandeur algébrique qui s’exprime dans le système international en 

weber (Wb). 

n⃗  : est un vecteur unitaire normal à la surface S du contour. Le sens de n⃗  est 

donné par la règle de la main droite.  

Exemples 

 

NB : Pour un contour comportant N spires, on a : ϕ = NB⃗⃗ .S⃗  

1.2. Règle du flux magnétique 

Un circuit parcouru par un courant électrique I et placé dans un champ 

magnétique uniforme tant à se déplacer de façon à ce que le flux magnétique qui 

le traverse soit maximal. 

1.3. Mise en évidence du phénomène d’induction 

électromagnétique             

B⃗⃗  

n⃗  
B⃗⃗  

n⃗  

n⃗  

B⃗⃗  
n⃗  

B⃗⃗  

B⃗⃗  

n⃗  
θ 

B⃗⃗  

n⃗  

θ 

Sens de 
circulation 

Φ = - BS Φ = 0 Φ = B.S.cosθ 
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On dispose d’une bobine reliée à un 

galvanomètre à zéro central et d’un aimant 

droit.  

 En approchant par exemple le pôle 

nord de l’aimant de la bobine, 

l’aiguille du galvanomètre dévie ; si 

on approche le pôle sud, l’aiguille 

dévie dans le sens contraire.  

 On observe le même phénomène en éloignant l’un des pôles de l’aimant 

ou en déplaçant la bobine par rapport à l’aimant fixe. 

Interprétations 

La déviation de l’aiguille montre qu’il y a passage d’un courant électrique dans le 

circuit. Ce courant est appelé courant induit. Il est dû à une variation du flux 

magnétique à travers la bobine.  

La bobine dans la laquelle circule le courant est l’induit. L’aimant qui est à 

l’origine de cette variation est l’inducteur. Ce phénomène est appelé induction 

électromagnétique. 

1.4. Loi de Lenz 

Enoncé : Le sens du courant induit est tel que par ses effets il tend à s’opposer à 

la cause qui lui a donné naissance. 

Dans le cas précédent, la variation du flux magnétique à travers la bobine est due 

à la variation du champ magnétique B⃗⃗  de l’aimant dans la bobine. Le sens du 

courant induit est tel que ce courant  crée un champ B⃗⃗ ind (champ magnétique 

induit) qui tend à s’opposer à la variation du champ magnétique inducteur B⃗⃗ .  

 
1.5. Fore électromotrice induite 

Le courant induit est généré par une force électromotrice induite : e 

La f.é.m. induite moyenne dans un circuit est égale à l'opposé de la variation du 

flux inducteur à travers ce circuit par unité de temps. em = -
∆ϕ

∆t
 : Loi de 

Faraday 

i B⃗ in

d 

B⃗  
N S S N i 

B⃗ in

d 

B⃗  

Approchement de l’aimant Eloignement de l’aimant 

S N 

Aimant Bobine 

Galvanomètre 
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La f.é.m. induite (instantanée) dans un circuit est égale à l'opposé de la dérivée par 

rapport au temps du flux inducteur à travers ce circuit. e = -
dϕ

dt
 

Si R est la résistance du circuit induit, en l’absence de toute autre force 

électromotrice dans le circuit, l’intensité algébrique du courant induit est donnée 

par la relation : i = 
e

R
 = -

1

R

dϕ

dt
  

Application 
Deux rails conducteurs AA’ et CC’, 

parallèles, de résistance négligeable, séparés 

par une distance ℓ = 25 cm, sont placés dans 

un plan horizontal. Une tige métallique 

rigide, de masse négligeable, perpendiculaire 

au plan des rails, peut glisser sans frottement 

dans une direction parallèle aux rails. La résistance de la tige est R = 0,8 Ω. L’ensemble est 

placé dans un champ magnétique B⃗  perpendiculaire au plan des rails et d’intensité B = 1 T. 

On déplace la tige à la vitesse constante v = 10 m.s-1, de gauche à droite. 

1/ Choisir sur le circuit un sens de parcours arbitraire et déterminer le vecteur surface S⃗  puis 

calculer le flux du champ magnétique à travers ce circuit pour une position quelconque de la tige 

MN. Poser AM = x. 

2/ En utilisant la loi de FARADAY :  

2.1/ Calculer la force électromotrice induite e qui apparait dans le circuit. 

2.2/ Calculer l’intensité du courant induit. Quel est son sens ?  

3/ Retrouver le sens du courant induit en utilisant la loi de LENZ. 

4/ Représenter la force électromagnétique créée au cours du déplacement de la tige. 

 

2. AUTO-INDUCTION 

2.1. Mise en évidence du phénomène d’auto-induction 

Considérons le circuit suivant. Les lampes L1 et 

L2 sont identiques, les valeurs des résistances du 

résistor et de la bobine sont égales.  

On constate que :  

 En fermant l’interrupteur K, L2 brille 

progressivement et L1 brille 

instantanément. 

v  

M 

N 

A A’ 

C’ C 

B⃗⃗  
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 En ouvrant ensuite K, L2 s’éteint progressivement et L1 s’éteint 

instantanément. 

Interprétations 

L’installation du courant dans la bobine entraine une variation du flux magnétique 

à travers la bobine. Il se produit une induction magnétique et apparition d’une 

f.é.m. induite aux bornes de la bobine qui tend à s'opposer à la variation du flux 

magnétique. La bobine est à la fois l’inducteur et l’induit c’est pourquoi le 

phénomène est appelé auto-induction. 

2.2. Inductance d’une bobine 

Lorsque qu’une bobine est parcourue par un courant, elle crée un champ B⃗⃗ . Le 

flux de ce champ magnétique à travers la bobine est appelé flux propre. Ce flux 

est proportionnel à l’intensité du courant i qui traverse la bobine. 

ϕ = Li  

Le coefficient de proportionnalité L : est une constante positive. On l’appelle 

inductance ou coefficient de self inductance ou self de la bobine. C’est une 

caractéristique de la bobine. L’inductance s’exprime en Henry (H).  

Expression de L pour un solénoïde 

Considérons un solénoïde de rayon R, de longueur ℓ comportant N spires 

parcouru par un courant i. 

ϕ = Li = NBS ⟹ L =
NBS

i
     or B = μ0

N

ℓ
i ⟹ L = 

N2μ
0
πR2

ℓ
  

2.3. Tension aux bornes d’une bobine parcourue par un 

courant d’intensité variable 

On peut considérer une bobine parcourue par un 

courant d’intensité variable i comme un dipôle 

AB constitué d’un générateur de tension, de f.é.m 

égale à la f.é.m. d’auto-induction e, en série avec 

un conducteur ohmique de résistance r égale à la 

résistance du fil constituant la bobine.  

La tension aux bornes de la bobine en convention 

récepteur est donnée par : u = uAB = ri - e  

Si L : est l’inductance de la bobine, alors on a : u = ri +
dϕ

dt
= ri + L

di

dt
  

⟹ u = ri + L
di

dt
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L’expression de la puissance instantanée échangée par la bobine est :  

P = ui = ri² + Li
di

dt
  

d

dt
(i2) = 2i

di

dt
⟹ i

di

dt
=

1

2

d

dt
(i2) ⟹ P = ri²+ L

2

d

dt
(i2) = PJ + Pm   

Pm = puissance magnétique ; PJ = puissance perdue par effet joule 

L’énergie magnétique W échangée par la bobine est telle que :  

Pm =
dW

dt
⟹

1

2

d

dt
(Li2) =

d

dt
(W) ⟹ W = 

1

2
Li²   

En courant continu, une bobine stocke de l’énergie à la fermeture du circuit et 

restitue cette énergie à l’ouverture du circuit. 

Remarques 

 Dans le cas où la bobine est une inductance pure, sa résistance est nulle 

et la tension à ses bornes s’écrit : uL= L
di

dt
  

 En régime permanant, le courant est constant (
di

dt
= 0), la tension aux 

bornes de la bobine s’écrit : uL= ri  ; la bobine se comporte comme 

un conducteur ohmique (résistor). 

 

3. ETUDE THEORIQUE DU 

DIPOLE (R, L) 
Réalisons le circuit suivant :  

3.1. Etablissement du courant 

En fermant K1 et en ouvrant K2, le courant s’installe 

progressivement. C’est le régime transitoire. 

Lorsque le régime permanent est atteint, l’intensité 

du courant devient constante.  

Soit i l’intensité du courant au régime transitoire. En appliquant la loi des mailles 

on a : uR1
+ uL = E ⟹ R1i + ri + L

di

dt
= E ⟹ i(R1 + r) + L

di

dt
= E  

En posant : R = (R1 + r), on a : 

di

dt
+

R

L
i = 

E

L
 Équation différentielle du premier ordre avec second membre. 

Soit I0, l’intensité du coutant au régime permanent. On a : 
R

L
 I0 =

E

L
 ⟹ I0 = 

E

R
 



M FAYE, professeur de sciences physiques au LCSA/V – Cours de physique terminale S 

 
 

6 

Résolution de l’équation différentielle 

L’équation sans second membre est 
di

dt
+

R

L
i = 0 ; La solution homogène est : 

ih = Ke−
R

L
t
 

La solution particulière est une constante iP = K1 ⟹
dip

dt
= 0 ⟹ ip =

E

R
= I0 

La solution i = ih + ip = Ke−
R

L
t +

E

R
 ⟹ i = Ke– 

R
L

t+
E

R
 

Détermination de la constante K : à t = 0 ; i = 0 ⟹ K = −
E

R
⟹ 

i = 
E

R
(1 - e

– 
R

L
t) = I0 (1 - e

– 
R

L
t)   

3.2. Annulation du courant 

En fermant K2 et en ouvrant K1, la bobine restitue son énergie au reste du circuit 

on a donc : L
di

dt
+ R1i + ri = 0 ; en posant : R = (R1 + r), on a : i = Ke−

R

L
t
 

A t = 0 ; c’est-à-dire l’instant où on annule le courant, on a :  

i = I0 =
E

R
 ⟹ K =

E

R
 ⟹ i = 

E

R
e– 

R
L

t = I0e– 
R
L

t   

3.3. Constante de temps 𝛕 

La grandeur τ = 
L

R
 est homogène à une durée. Elle est appelée constante de 

temps du dipôle (R, L). Son unité est la seconde (s). Cette constante fournit un 

ordre de grandeur de la durée de la réponse d’un dipôle (R, L). 

En effet : 

 Pour l’établissement du courant on a : A t = τ, i = I0(1 − e−) =

0,63I0= 63%I0 

 Pour l’annulation du courant : A t = τ , i = I0e
− = 0,37I0 = 37%I0 

 

Détermination graphique de la constante de temps 

Traçons les courbes : i = I0 (1 – e
– 

R

L
t)  et i = I0e

– 
R

L
t
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Théoriquement le courant ne s'annule jamais et que le temps d’installation ou 

d’annulation du courant est infiniment grand. Toutefois, en pratique, nous 

constatons qu'après un temps égal à 5 fois la constante de temps (t = 5τ), le 

courant d’installation vaut 0,99I0 et le courant d’annulation vaut 0,007I0 et donc 

nous pouvons considérer que l’installation (ou l’annulation) du courant est 

terminée.  

  

0,63I0

I0

i

t
0

0 τ

0,37I0

i

0
0 τ

t

I0
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P9 : ETUDE DU DIPOLE (R, C) 

 

1. RAPPELS 
Considérons un condensateur de capacité C en convention 

récepteur. On choisit un sens positif pour le courant i. 

i =
dq

dt
 ; uC = 

q

C
  

Remarques : 

 Les grandeurs : i, q et uC sont algébriques. La capacité C est positive. 

 La charge du condensateur est positive. Elle est égale à la valeur 

absolue de q. Si elle augmente, le condensateur se charge et si elle 

diminue, le condensateur se décharge. 

 

2. CHARGE D’UN CONDENSATEUR 

2.1. Charge d’un condensateur avec un générateur de 

courant à intensité constante 

Considérons le circuit ci-contre. Le générateur de courant 

délivre un courant d’intensité constante et réglable. Le 

condensateur est initialement déchargé (q0 = 0).  

On fixe la valeur de l’intensité I du courant. 

I =
dq

dt
 ⟹ dq = Idt ⟹ q = It + K  ; 

A t = 0, q = q0 = 0 ⟹ K = 0 ⟹ q = It   

2.2. Charge d’un condensateur avec un générateur de 

tension constante 

a) Expérience 

Réalisons le circuit série ci-contre constitué par :  

o un générateur de tension continue constante 

de f.é.m. E = 6 V ;  

o un résistor de résistance R ;  

o un condensateur de capacité C  

o un interrupteur K 

On ferme l’interrupteur K à une date t = 0 et on 

visualise à l’aide d’un oscilloscope bicourbe les 
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tensions uC aux bornes du condensateur et uG aux bornes du générateur. On 

obtient l’oscillogramme ci-dessous 

 

b) Observations 

 La tension aux bornes du condensateur croit progressivement et au 

régime permanent (à la fin de la charge du condensateur), la tension à 

ses bornes est égale à la f.é.m. du générateur. uCmax
= 6 V ; 

 La tension aux bornes du résistor est : uR = Ri = E - uC. Cette tension 

décroit progressivement. Donc l’intensité du courant décroit. A la fin de 

la charge, uR= 0 ⟹ i = 0  

 

3. ETUDE THEORIQUE DU DIPOLE (R, C) 

3.1. Charge et décharge d’un condensateur en série avec un 

résistor 

Soit le circuit suivant permettant la charge et la décharge 

du condensateur.  

 Charge du condensateur 

En fermant l’interrupteur sur la position 1, le 

condensateur se charge.  

En appliquant la loi des mailles à un instant t de la charge, 

on obtient : E − uR − RC = 0 ⟹ uC + uR = E  

⟹
q

C
+ R

dq

dt
= E ⟹  

0

voie A

voie B

6

u(V)

t



M FAYE, professeur de sciences physiques au LCSA/V – Cours de physique terminale S 

 
 

10 

dq

dt
+

1

RC
q =

E

R
 : équation différentielle de la charge 

La solution homogène s’écrit : qh = Ke−
1

RC
t ; la solution particulière est 

constante : qp = EC 

La solution finale est : q = Ke−
1

RC
t + EC 

A t = 0, q = 0 ⟹ K = −EC ⟹ q = −EC e−
1

RC
t + EC = EC(1 − e−

1

RC
t)  ; 

q = EC (1 – e
– 

1

RC
t)  ; uC =

q

C
 ⟹ uC = E (1 – e

– 
1

RC
t)  ;   

i =
dq

dt
= EC (

1

RC
 e−

1

RC
t) ⟹ i =

E

R
 e

– 
1

RC
t
 

La puissance instantanée du condensateur est :  

P = ui =
q

C

dq

dt
=

1

C

1

2

d

dt
(q²) =

d

dt
(

1

2C
q²)  

L’énergie instantanée emmagasinée par le condensateur est telle que : 

 P =
dW

dt
 ⟹  

dW

dt
=

d

dt
(

1

2C
q2) ⟹

d

dt
(W) =

d

dt
(

1

2C
q2) ⟹   

W = 
1

2
CuC

2  = 
1

2
quC = 

1

2

q2

C
  

 Décharge du condensateur 

A la fin de la charge du condensateur, on bascule l’interrupteur en position 2, le 

condensateur se décharge sur le résistor. 

La loi des mailles donne : uC + Ri = 0 ⟹ 

dq

dt
+

1

RC
q = 0  : équation différentielle de la décharge 

q = Ke−
1

RC
t
 ; A t = 0, q = CE ⟹ K = CE ⟹ q = CEe

– 
1

RC
t
   

i =
dq

dt
 = –

E

R
e

– 
1

RC
t
 ; u =

q

C
 = Ee

– 
1

RC
t
  

Remarque 

Le courant de charge est i =
E

R
e−

1

RC
t
 et le courant de décharge est  i = −

E

R
e−

1

RC
t
. 

Ces deux courants ont des signes contraires.  
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3.2. Constante de temps du dipôle (R, C) 

Le produit τ = RC  homogène à une durée, est appelé constante de temps du 

dipôle (R, C) et s’exprime en seconde (s). La constante de temps τ donne l’ordre 

de grandeur de l’établissement du régime permanent.  

Détermination de la constante de temps 

 1ère méthode 

Lors de la charge, on a : uC = E(1 − e−
1

RC
t), à la date t = τ = RC ⟹  

uC = E(1 − e−) = 0,63E = 63%E 

Pour la décharge, à la date t = τ, on a : uC = 0,37E = 37%E 

 2ème Méthode 

Lors de la charge on a : uC = E(1 − e−
1

RC
t) ⟹

duC

dt
=

E

τ
e−

t

τ ⟹ (
duC

dt
)
t=0

=
E

τ
 

L’équation de la tangente à l’origine est u = (
duC

dt
)
t=0

[t − 0] + u(0) =
E

τ
t 

Cette tangente coupe l’asymptote u = E au point d’abscisse : t = τ.  

En effet, on a : 
E

τ
t = E ⟹ t = τ 

Pour la décharge l’équation de la tangente à l’origine est : u = −
E

τ
t + E 

 
 

  

0,63E

E

uC

t
0

0 τ

0,37E

uC

0
0 τ

t

E
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P10 : OSCILLATIONS ELECTRIQUES LIBRES ET 

OSCILLATIONS ELECTRIQUES FORCEES 
 

1. OSCILLATIONS ELECTRIQUES LIBRES 

1.1. Etude expérimentale du circuit (L, C) 

Réalisons le circuit suivant :  

La f.é.m du générateur est : E = 6 V.  

Fermons l’interrupteur sur la position 1 : le 

condensateur se charge. Basculons ensuite 

l’interrupteur sur la position 2 et visualisons la tension 

uC aux bornes du condensateur à l’aide d’un 

oscilloscope. On obtient les oscillogrammes suivants : 

 
NB : la période des oscillations augmente avec les valeurs de L et de C. 

 

1.2. Etude théorique du circuit (L, C) 

a) Oscillations libres non amorties (R = 0) 

 Equation différentielle de la tension 𝐮𝐂 du condensateur 

Reprenons le circuit précédent et appliquons la loi des mailles lorsqu’on bascule 

l’interrupteur sur ②. 

6

-6

0
t

u

R = 0 : Oscillations libres non amorties 

6

0

-6

u

t

R ≠ 0 : Oscillations libres amorties
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uC+uL = 0 ⟹ uC+L
di

dt
 = 0 ⟹ uC+L

d

dt
(

dq

dt
)= 0 ⟹ uC+L

d2

dt2
(CuC) = 0 ⟹ 

LC
d2uC

dt2
+ uC = 0  ⟹ 

d2uC

dt2
 + 

1

LC
uC = 0    

La solution de cette équation différentielle est de la forme : 

uC = Um cos(ω0t + ϕ)  

Um et ϕ : sont des constantes à déterminer par les conditions initiales. 

ω0 = √
1

LC
 : est la pulsation propre du circuit (L, C) ; 

T0 = 
2π

⍵0
 = 2π√LC  : est la période propre 

N0 = 
1

2π√LC
 : est la fréquence propre 

 Energie totale dans le circuit (L, C) 

A t = 0, uC = E et uL = 0 ⟹  W0 = 
1

2
CE²  

A un instant t donné on a: W(t)=
1

2
CuC

2 +
1

2
Li2 

i = 
d

dt
q = 

d

dt
(CuC) = C

duC

dt
 = – CEω0 sin(ω0t)   ⟹ i2 = C2E2ω0

2sin2(ω0t) 

W = 
1

2
[(E²Ccos²(⍵0t)+(LE²C²⍵0

2sin²(⍵0t)] ;  ⍵0
2 = 

1

LC
⟹ 

W(t) = 
1

2
CE2 = W0 = cte   

Il y a échange continuel d’énergie entre la bobine et le condensateur ; l’énergie 

totale est constante. 

 Equation différentielle à partir de l’énergie totale 

W=
1

2
CuC

2  +
1

2
Li2 = cte ⟹ 

dW

dt
 = 0 ⟹ CuC

duC

dt
+Li

di

dt
 = 0 ; i = C

duC

dt
 

CuC

duc

dt
+LC

duC

dt

di

dt
 = 0 ⟹ L

di

dt
+uC = 0 ; LC

d2uC

dt2
+uC = 0 ; 

d2uC

dt2
+

1

LC
uC = 0  

b) Oscillations libres amorties (R ≠ 0) 

 Equation différentielle de la tension uC du condensateur 

Reprenons le circuit précédent et appliquons la loi des mailles lorsqu’on bascule 

l’interrupteur sur ②. 
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uC+L
di

dt
+Ri = 0 ; i = 

d

dt
q = 

d

dt
(CuC) = C

duC

dt
 ⟹ 

di

dt
 = C

d2uc

dt2
 ⟹ 

uC+LC
d2uC

dt2
+RC

duC

dt
 = 0 

d2uC

dt2
 + 

R

L

duC

dt
 + 

1

LC
uC  = 0  : Equation différentielle du second degré 

sans second membre. 

L’équation caractéristique est : 𝓈2 +
R

L
𝓈 +

1

LC
= 0 ; ∆=

R2

L2 −
4

LC
, la résistance est 

dite résistance critique si ∆= 0 ⟹ RC
2 =

4L

C
 ⟹ RC = 2√

L

C
  

Suivant les valeurs de la résistance, on distingue 3 régimes pour le circuit (R, L, C) 

 
 Energie totale 

Il y a des amortissements donc l’énergie totale diminue cours du temps. 

ET(t) = 
1

2
Li2+

1

2

q2

C
 ⟹ 

dET

dt
 = iL

di

dt
+

q

C

dq

dt
 = i (L

di

dt
+

q

C
)   Or L

di

dt
+

q

C
 = – Ri⟹ 

dET

dt
 = – Ri²  

La diminution de l'énergie électrique est égale à la chaleur dissipée par effet joule 

dans le résistor. 

 

2. GENERALITES SUR LE COURANT ALTERNATIF 

SINUSOÏDAL  

2.1.  Caractéristiques d’un courant alternatif sinusoïdal  

Un courant alternatif sinusoïdal est une fonction du temps de la forme :  

i = Imcos(⍵t + ϕ)  

uC

t
0

T≈T0

Régime
pseudo-périodique
(réistance faible)

uC

0
t

Régime
critique (R = RC)

uC

t
0
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Ce courant est caractérisé par :  

o son amplitude maximal ou 

intensité maximale Im ;  

o sa fréquence N ou f : N = 
1

T
 ;  

o sa pulsation ω imposée par un 

générateur basse fréquence 

(G.B.F) :  ω = 
2π

T
 = 2πN   

o son intensité efficace Ieff ou simplement I, mesuré par un ampèremètre : 

Ieff = I = 
Im

√2
  

2.2. Déphasage et impédance d’un dipôle  

Lorsqu’un dipôle D est traversé par un courant i(t) 

alternatif sinusoïdal de période T, alors la tension u(t) 

à ses bornes est alternative sinusoïdale de même 

période T. Généralement, il existe une différence de 

phase entre le courant alternatif i(t) et la tension u(t).  

Soient : i = Im cos(ωt + ϕ
1
)= I√2 cos(ωt + ϕ

1
) et   

u = Um cos(ωt + ϕ
2
)= U√2 cos(ωt + ϕ

2
) 

 Le déphase ϕ de u(t) par rapport à i(t) est la différence de phase : 

ϕ = (ωt + ϕ
2
) – (ωt + ϕ

1
) = ϕ

2
– ϕ

1
 

 Si ϕ > 0 : u(t) est en avance par rapport à i(t) 

 Si ϕ < 0 : u(t) est en retard par rapport à i(t) 

 Si ϕ = 0 : u(t) et i(t) sont en phase 

 L’impédance Z du dipôle D est le rapport : Z = 
Um

Im
 = 

U

I
  

U : est la tension efficace aux bornes du dipôle, elle est mesurée par un 

voltmètre. 

 Um : peut être mesurée par un oscilloscope. 

Z : s’exprime ohm (Ω). Elle dépend en général de la fréquence du 

courant alternatif traversant le dipôle.  

La loi d’Ohm en courant alternatif s’écrit : U = ZI  

i 

u 

D 

Im

T
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2.3. Puissance d’un dipôle en courant alternatif     

Soit un dipôle AB traversé par un courant alternatif : i = I√2cos(ωt).  

Soit u = U√2cos (ωt + ϕ) la tension alternative à ses bornes.  

 Puissance instantanée du dipôle AB 

P(t) = ui = U√2 cos(⍵t+ϕ) I√2cos(⍵t) = 2UI. cos(⍵t+ϕ) Icos(⍵t) 

En appliquant la relation : 2cosa. cosb = cos(a + b) + cos(a − b)  

avec a = ⍵t + ϕ et b = ϕ on 

trouve : P(t) = UI. cos(2⍵t + ϕ)+ UI.cosϕ  

On constate que P(t) est la somme de deux termes : un terme sinusoïdal mais de 

fréquence double à la fréquence du générateur et un terme constant. 

 Puissance moyenne sur une période (ou puissance active) 

La puissance moyenne sur une période est définie par : Pm = 
1

T
∫ Pdt

T

0
 

Pm = 
1

T
∫ [UI. cos(2⍵t+ϕ)+UI.cosϕ]dt

T

0
  

Pm =
1

T
∫ UI. cos(2⍵t+ϕ) dt + 

1

T
∫ UI.cosϕdt

T

0
 = J

1
+ J

2

T

0
   

Or J
1
= 0 ⟹Pm= J

2
=

UIcosϕ

T
∫ dt =

T

0
UI.cosϕ ⟹ Pm= UI.cosϕ   

UI.cosϕ : est appelé puissance active. Elle s’exprime en watt (W) ;  

UI : est appelé puissance apparente. Elle s’exprime en volt.ampère (V.A) ; 

cosϕ : est appelé facteur de puissance. 

2.4. Représentation de Fresnel d’une fonction 

sinusoïdale 

Soit la fonction u = Umcos (⍵t + ϕ). Pour 

faire la représentation de Fresnel de cette 

fonction, on utilise un axe (x′Ox). La fonction 

u sera représentée par un vecteur de norme 

Um formant un angle 𝜙 avec l’axe (x′Ox). 

Application 

1) Faites sur la même figure la représentation de Fresnel pour les fonctions suivantes : 

𝑢1 = 4𝑠𝑖𝑛 (⍵𝑡 +
𝜋

2
) ; 𝑢2 = 3𝑠𝑖𝑛(⍵𝑡) 

2) Déduire la fonction : 𝑢 = 𝑢1 + 𝑢2 ; On mettra 𝑢 sous la forme :   

𝑢 = 𝑈𝑚 𝑐𝑜𝑠(𝜔𝑡 + 𝜙), expression où  𝑈𝑚 et 𝜙 seront déterminés. 

x' x 

ϕ 

Um 

O 
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2.5. Etude de quelques dipôles simples 

a) Le résistor 

Soit i = Im cos(⍵t) = I√2cos (⍵t) le courant traversant un résistor de 

résistance R.  

uR = Ri = RI√2cos (⍵t) ⟹  ϕ = 0 ; Z =
Um

Im
=

RI√2

I√2
= R 

 
Pour un résistor, la tension uC à ses bornes et l’intensité i qui le traverse sont en 

phase. L’impédance d’un résistor est égale à sa résistance ϕ = 0 et Z = R    

b) L’inductance pure (bobine non résistive) 

Soit i = Im cos(⍵t) = I√2cos (⍵t), le courant traversant une bobine non 

résistive d’inductance L.  

uL = L
di

dt
= −LI√2⍵sin(⍵t) = LI√2⍵ cos(⍵t +

π

2
) ⟹  Um = LI√2⍵ ; 

ϕ = (⍵t +
π

2
) − ⍵t =

π

2
  ; ϕ = 

π

2
 rad  ; Z =

U

I
= L⍵

I

I
= L⍵ ; Z = Lω  

 

Pour une inductance pure, la tension uL à ses bornes est en avance de 
π

2
 par 

rapport au courant i qui la traverse.  

c) Le condensateur 

Soit i = I√2cos(⍵t)  ; uC =
q

C
 ; i =

dq

dt
⟹ q = ∫ idt

t

0
= I√2∫ cos(⍵t) dt

t

0
 

q =
I√2

ω
sin(ωt) =

I√2

⍵
cos (⍵t −

π

2
) ⟹ 

uC =
I√2

C⍵
cos (⍵t −

π

2
) ⟹ ZC =

UC

I
=

I

C⍵

I
=

1

C⍵
  

Donc uC est en retard de π/2 par rapport à i. 

Z = 
1

Cω
 ; ϕ = - 

π

2
 

RI 

LωI 

π/2 

I

Cω
 

– π/2 
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3. OSCILLATIONS ELECTRIQUES FORCEES 

3.1. Oscillations forcées 

Le terme « forcées » renvoie à la présence d’un générateur basse fréquence qui 

alimente le dipôle (R, L, C). Ce générateur impose sa fréquence aux oscillations 

du dipôle (R, L, C), on dit que les oscillations sont forcées. 

3.2. Détermination expérimentale du déphasage du 

dipôle (R, L, C) série 

Réalisons le circuit suivant : 

Fixons la tension efficace U du GBF et visualisons à l’aide d’un oscilloscope 

bicourbe la tension u du GBF qui est égale à la tension aux bornes du dipôle (R, 

L, C) et la tension uR aux bornes du résistor.  

 
En fermant le circuit, on observe les oscillogrammes ci-dessous sur l’écran de 

l’oscilloscope pour une valeur N de la fréquence du GBF : 

 
∆t : est le décalage horaire entre u et uR.  

Soit ϕ le déphasage entre u et uR On a : |ϕ|=
2π

T
∆t = ω∆t = 2πN∆t   

Les courbes montrent que u est en avance de ϕ par rapport à uR donc par rapport 

à l’intensité du courant i.  

u

uR

∆t
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Remarque : 

Le déphasage ϕ entre u et i dépend de la fréquence du GBF. 

o Si ∆t = 0 ⟹ ϕ = 0 : on dit que : 𝐮 et 𝐮𝐑 sont en phase 

o Si ∆t =
T

2
 ⟹ |ϕ| =

2π

T
∗

T

2
= π : on dit que : 𝐮 et 𝐮𝐑 sont en 

opposition de phase 

o Si ∆t =
T

4
 ⟹ |ϕ| =

2π

T
∗

T

4
=

π

2
 : on dit que : 𝐮 et 𝐮𝐑 sont en 

quadrature 

Application 

On donne le circuit ci-contre : le générateur 

délivre une tension de fréquence f. b est une 

inductance pure L = 1 H. ; C : est un 

condensateur de capacité C ; la résistance du 

résistor est R = 10 Ω. 

Les courbes observées sur l’écran de l’oscilloscope sont reproduites ci-dessous.  

 
1) Déterminer la fréquence f du courant. 

2) Déterminer le déphasage de la tension délivrée par le générateur par rapport à l’intensité 

instantanée i(t) du courant. 

3) Déterminer la tension maximale Um aux bornes du générateur et l’intensité maximale Im du 

courant. 

4) Déterminer l’impédance Z du dipôle (R, L, C). 

5) Donner les expressions en fonction du temps de la tension aux bornes du générateur et de 

l’intensité du courant. 

Données : Sensibilité verticale sur les deux voies : 5 V/div ; vitesse de balayage : 2,5 ms/div 

0

A

B
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3.3. Etude théorique du circuit (R, L, C) série en régime 

sinusoïdal forcé 

a) Equation différentielle  

Considérons le circuit suivant constitué d’un 

dipôle (R, L, C) série alimenté par un générateur 

basse fréquence de tension efficace U, de 

fréquence N constantes.  

En appliquant la loi des mailles, on obtient : 

Ri + L
di

dt
 + 

q

C
 = u    

b) Résolution de l’équation différentielle 

Posant : i = I√2cos(ωt)  et u = U√2 cos(ωt + ϕ), l’équation différentielle 

devient : 

RI cos(ωt) + LωI cos (ωt +
π

2
) + 

I

Cω
cos (ωt – 

π

2
) = U cos(ωt + ϕ)   

Résoudre l’équation revient à déterminer U et ϕ. Pour cela, on utilise la 

représentation de Fresnel.  

 

U2 = R2I2 + I2 [(L⍵−
1

C⍵
)
2

]  

 

Z2 =
U2

I²
= R2 + (L⍵ −

1

C⍵
)
2

⟹   

Z = √R2+ (L⍵ – 
1

C⍵
)

2

 ;   cosϕ = 
R

Z
   ;  tanϕ = 

L⍵ – 
1

C⍵

R
    

Remarque : 

 Si Lω >
1

Cω
 ⟹ ω > ω0, alors l’effet d’inductance l’emporte sur l’effet 

de capacité : tanϕ > 0 ⟹ ϕ > 0 : u est en avance de ϕ sur i. 

 Si Lω <
1

Cω
 ⟹  ω < ω0, alors l’effet de capacité l’emporte sur l’effet 

d’inductance : tanϕ < 0 ⟹ ϕ < 0 : u est en retard de −ϕ sur i. 

 Si Lω =
1

Cω
 ⟹  ω = ω0, alors tanϕ = 0 ⟹ ϕ = 0 : u et i sont en 

phase : c’est la résonance. 

I

Cω
 

ϕ 

RI 

LωI 
U 
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4. ETUDE DE LA RESONANCE EN INTENSITE 

4.1. Etude expérimentale 

Réalisons le circuit suivant :  

Faisons varier la fréquence N du générateur tout en 

maintenant sa tension efficace constante. Notons à 

chaque fois la valeur du courant efficace I correspondant 

puis traçons la courbe I = f(ω).  

 

On constate que la courbe I = f(ω) passe par un maximum pour : ω = ω0 = √
1

LC
   

 

 

En ce moment, on observe sur l’écran 

de l’oscilloscope les courbes de 

variation de u et de uR:  

On voit que u(t) et de i(t) sont en 

phase (ϕ = 0). C’est la résonance en 

intensité. On dit que le dipôle (R, L, 

C) est un résonateur et le générateur 

un excitateur. 

 

 

 

 

I

Résonance aigue 
(faible résistance)

Résonance floue 
(grande résistance)

0
0

𝛚

u

uR

Résonance

(𝛚 = 𝛚0)
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4.2. Etude théorique de la résonance 

Prenons le circuit précédent et posons :   

i = I√2cos(⍵t)  et = u = U√2cos (⍵t + ϕ).   

Dans ce cas : on a  I =
U

Z
=

U

√R2+(L⍵−
1

C⍵
)
2
  

Comme U = cte, alors I ∶ est maximale si son dénominateur est minimal : 

⟹ (L⍵ −
1

C⍵
) = 0 ⟹ ⍵ = √

1

LC
= ⍵0    ;    Z = R ;   

cosφ =
R

Z
= 1 ⟹ φ = 0. 

L’intensité maximale :  I0 = 
U

R
 

4.3. Propriétés de la résonance d’intensité 

A la résonance d’intensité, on a : 

 L’intensité efficace du courant est maximale : I0=
U

R
  

 ⍵ = ⍵0 = 
1

√LC
 ⟹ N = N0 = 

1

2π√LC
 

 L’intensité du courant et la tension aux bornes du dipôle (R, L, C) sont 

en phase (ϕ = 0) 

 L’impédance du dipôle (R, L, C) est égale à R résistance totale du dipôle 

(l’effet de l’inductance annule l’effet de la capacité). 

4.4. Détermination de la bande passante 

La bande passante en pulsation est l’ensemble des pulsations pour lesquelles la 

réponse en intensité est supérieure à 
I0

√2
 ; I0 étant l’intensité efficace du courant à 

la résonance.  

Soient ⍵1 et ⍵2 les pulsations limites de la bande passante. Pour déterminer  

⍵1 et ⍵2 on écrit : 

I =
I0

√2
⟹

U

√R2+(L⍵−
1

C⍵
)
2
=

U

R√2
⟹ √R2 + (L⍵ −

1

C⍵
)
2

= R√2 ⟹  

R2 + (L⍵−
1

C⍵
)
2

= 2R2⟹ (L⍵ −
1

C⍵
)
2

= R2 ⟹  

L⍵ −
1

C⍵
= R ou L⍵ −

1

C⍵
= −R ⟹  

LC⍵2 − RC⍵ − 1 = 0 ∶ ① ou LC⍵2 + RC⍵− 1 = 0:② 

Pour les deux équations, on a : ∆ = R2C2 + 4LC 
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On a une racine positive pour chaque équation :   

Pour ① : ⍵ =
RC+√∆

2LC
 et pour ② ∶ ⍵′ =

−RC+√∆

2LC
 

⍵ > ⍵′ ⟹ ⍵2 = ⍵ et ⍵1 = ⍵′ ⟹ ⍵1=
– RC+√∆

2LC
 et ⍵2=

RC+√∆

2LC
  

La largeur de la bande passante est : 

 ∆⍵ = ⍵2 – ⍵1 = 
R

L
 et ∆N = 

∆⍵

2π
 = 

R

2πL
   

 

4.5. Facteur de qualité  

L’acuité des courbes de résonances est caractérisée par le facteur de qualité Q du 

circuit défini par : Q = 
⍵0

∆⍵
 = 

L⍵0

R
 = 

1

RC⍵0
   

Le facteur de qualité n’a pas d’unité. 

Plus Q est petit, plus la courbe est large et que le circuit est moins sélectif. 

4.6. Surtension à la résonance aux bornes de la bobine et 

du condensateur 

UC = ZCI0 =
I0

C⍵0
  or I0 =

U

R
⟹ UC =

U

RC⍵0
= QU⟹ UC = QU  

UL = ZLI0 = L⍵0
U

R
=

1

C⍵0

U

R
=

U

RC⍵0
= QU ⟹ UL = QU  

I

𝛚
0
0 𝛚1 𝛚2

I0

2

I0

∆𝛚

𝛚0
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Si Q > 1, il y a surtension aux bornes du condensateur et de la bobine. Cela 

peut entrainer le claquage du condensateur (destruction de l’isolant). 

Application 

Un dipôle (R, L, C) renferme une inductance pure 𝐿 = 0,10 𝐻, une résiatance 𝑅 = 12 𝛺 

et un condensateur de capacité C. La tension délivrée par le générateur est : 

𝑢 = 60√2𝑐𝑜𝑠 (100𝜋𝑡). 

1) Quelle valeur faut-il donner à C pour qu’il ait résonance d’intensité ? 

2) Calculer l’intensité du courant de résonance. Calculer le facteur de qualité du circuit. 

3) Calculer à la résonance la tension efficace aux bornes du condensateur. 
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P11 : OSCILLATIONS MECANIQUES LIBRES 
 

1. OSCILLATIONS MECANIQUES LIBRES NON 
AMORTIES : ETUDE DU PENDULE ELASTIQUE 
HORIZONTAL 

Considérons un solide de masse m accroché 
à l’une des extrémités d’un ressort 

horizontal, de constante de raideur k (voir 
figure).  
Le solide peut glisser sans frottement sur le 
plan horizontal.  
A l’équilibre le ressort n’est ni allongé ni 
comprimé, la position du centre d’inertie G 
du solide coïncide avec l’origine de l’axe x’x. 
Déplaçons le solide de sa position 
d’équilibre suivant l’axe x’x puis 
abandonnons-le sans vitesse initiale. Le solide oscille autour de sa position 
d’équilibre.  

1.1. Equation différentielle du mouvement du solide 
Système : solide de masse 
Référentiel du laboratoire supposé galiléen.  

A l’équilibre du solide, on a : R⃗⃗  + P⃗  = 0⃗  
A un instant t du mouvement, on a d’après le T.C.I : P⃗  + R⃗⃗  + T⃗⃗  = ma    

R⃗⃗ + P⃗⃗ = 0⃗  ⟹ T⃗⃗ = ma⃗    ;   T⃗⃗ = −k∆ℓ⃗⃗⃗⃗    ; 

OM⃗⃗⃗⃗⃗⃗ = xi = ∆ℓ⃗⃗⃗⃗  ;  a⃗ =
d²

dt²
OM⃗⃗⃗⃗⃗⃗ = ẍi   ⟹  −kxi = mẍi   ⟹ kx = mẍ ⟹ 

ẍ + 
k

m
x = 0  Equation différentielle d’un mouvement oscillatoire non amorti. 

1.2. Solution de l’équation différentielle 

Posons ⍵0
2 =

k

m
  ⟹ ẍ + ⍵0

2x = 0 ; la solution de cette équation peut se mettre 

sous la forme : x = xmcos(⍵0t + Φ)  

⍵0 = √
k

m
 : pulsation propre ; T0 = 2π√

m

k
 : période propre ;  

f0 = 
1

2π
√

k

m
 : fréquence propre.  

xm et Φ : sont des constantes déterminées à partir des conditions initiales. 

∆𝓵⃗⃗⃗⃗  ⃗  

T⃗⃗  

R⃗⃗  

P⃗⃗  

i  ⃗  

𝟎  

ℓ0 

x' x 

M 
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L’équation horaire de la vitesse est : 

v =
dx

dt
= ẋ = −⍵0xm. sin(⍵0t + Φ) = ⍵0xm. co s (⍵0t + Φ +

π

2
)  

L’équation horaire de l’accélération est :  

a =
dv

dt
= −⍵0

2xm. coc(⍵0t + Φ) = −⍵0
2x    ⟹ a = – ⍵0

2x  

Si à t = 0, x = xm, alors on a : x = xmcos(ω0t) 

 
1.3. Conservation de l’énergie mécanique du système 

L’énergie totale du système (ressort + solide) est donnée par :  

E(t)=Ec+Ep=
1

2
mv²+

1

2
kx²  

E(t)=
1

2
m[-⍵0xm. sin(⍵0t+Φ)]²+

1

2
k[xm. cos(⍵0t+Φ)]²  

E(t)=
1

2
m⍵0

2xm
2 sin²(⍵0t+Φ)+

1

2
kxm

2 cos²(⍵0t+Φ)=
1

2
kxm

2 =cte   

E(t) = 
1

2
kxm

2  = constante   

Le système (ressort + solide de masse m) est conservatif. Au cours du mouvement 
du système, il y’a transformation mutuelle et permanent d’énergie cinétique en 
énergie potentielle et vice versa. 
Remarque : on peut retrouver l’équation différentielle du mouvement à partir de 
l’énergie mécanique instantanée. En effet, on a :  

E=
1

2
mẋ2+

1

2
kx2=cte  ⟹

dE

dt
=0 ⟹mẍẋ+kxẋ=0⟹ 

ẋ(mẍ+kx)=0  ⟹ ẍ + 
k

m
x = 0  ;  car x ̇≠ 0 

1.4. Oscillateur harmonique 
On appelle oscillateur harmonique tout système physique dont un paramètre θ 
(abscisse, angle, tension électrique…) vérifie une équation différentielle de type : 

θ̈ + ⍵0
2θ = 0  

Si le système oscille sur une droite, l’oscillateur est dit linéaire. 

xm

-xm

0
t

T0

x
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2. OSCILLATIONS MECANIQUES AMORTIES 
Reprenons le pendule élastique horizontal précédent et supposons qu’il existe des 

forces de frottement représentées par une force f ⃗⃗ = - λv⃗ . (λ est appelé : 
coefficient de frottement).  

2.1. Etablissement de l’équation différentielle 
Le théorème du centre d’inertie s’écrit :  

R⃗⃗ n+P⃗ +f +T⃗⃗ =m
dv⃗ 

dt
 ⟹R⃗⃗ n+P⃗ -λv ⃗⃗ +T⃗⃗ =m

dv⃗ 

dt
 

T⃗⃗ =-k∆l⃗⃗  ⃗ ; OM⃗⃗ ⃗⃗⃗⃗  ⃗=xi =∆l⃗⃗  ⃗ ;  a ⃗⃗ =
d²

dt²
OM⃗⃗ ⃗⃗⃗⃗  ⃗=ẍi ⃗   ;  f =-λẋi  ⟹  R⃗⃗ n+P⃗ -λẋi -kxi ⃗ =mẍi ⃗  

En projetant dans 𝑖 , on a :−kx − λv = m
dv

dt
  ⟹  mẍ + λẋ + kx = 0 

⟹ ẍ +
λ

m
ẋ +

k

m
x = 0 ⟹ 

ẍ + 
λ

m
ẋ + ω0²x = 0  Equation différentielle d’un système amorti. 

2.2. Les régimes du mouvement d’oscillation amortie 
En traçant la courbe x = f(t), on constate une diminution de l’amplitude des 
oscillations. Cela est dûe à une perte d’énergie du système. Suivant les valeurs du 

coefficient d’amortissement λ, trois cas de figure se présentent : 

o Si λ est faible : le régime est dit pseudo-périodique. La pseudo-

période est : T ≈ T0 = 2π√m/k  

o Si λ est important : en écartant le solide, on constate qu’il revient à 

sa position d’équilibre sans osciller : c’est le régime critique. 

o Si λ très important, le régime est dit apériodique. 

 
2.3. Variation de l’énergie mécanique 

Déterminons la variation de l’énergie mécanique du système précédent : ∆Em 

Em =
1

2
mv2 +

1

2
kx2 ⟹ 

dEm

dt
=

m

2

d

dt
v2 +

k

2

d

dt
x2 = mv

dv

dt
+ kx

dx

dt
 ⟹ 

v (m
dv

dt
+ kx) = (−λv)v = −fv  

⟹ dEm = −fvdt ⟹ ∆Em = −fv∆t = −fd = W(f ) ; 

∆Em = – fd = W(f ) < 0  

x

t
0

T≈T0

Régime
pseudo-périodique

x

0
t

Régime critique

x

t
0

Régime apériodique
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On constate que l’énergie mécanique se dégrade au cours du temps. C’est cette 

perte d’énergie qui justifie la diminution d’amplitude xm des oscillations au cours 
du temps et donc l’amortissement observé. 

3. ANALOGIE GRANDEURS MECANIQUES ET 

GRANDEURS ELECTRIQUES 

 

Pendule élastique Circuit (L, C) 

Energie potentielle : Ep=
1

2
kx² 

Energie cinétique : EC=
1

2
m (

dx

dt
)

2

 

Energie électrostatique : Ee=
1

2

1

C
q² 

Energie magnétique : Em=
1

2
L (

dq

dt
)

2

 

Equation différentielle et solution 

d2x

dt2
+

k

m
x = 0   ;  x = Xmcos(⍵0t+ϕ) 

Avec ⍵0 =√
k

m
 

Equation différentielle et solution 

d2q

dt2
+

1

LC
q = 0  

q = Q
m

cos(⍵0t+ϕ) 

Avec ⍵0=√
1

LC
 

Ces relations conduisent aux analogies entre les grandeurs mécaniques et 

électriques ci-dessous : 

m ⟷ L   k ⟷ 
1

C
   x ⟷  q  v  ⟷ i 
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P12 : INTERFERENCES LUMINEUSES 
 

1. PHENOMENE D’INTERFERENCE DE LA LUMIERE 

1.1. Interférence en lumière monochromatique 

a) Expérience des fentes de Young 

 

Une source S de lumière 

monochromatique envoie 

sur une plaque opaque 

percée de fentes très fines 

F1 et F2.  

Un écran est placé derrière 

la plaque. La lumière est 

diffractée au niveau de 

chacune des fentes. 

b) Observations 

Sur l’écran, on voit une zone où les 

deux faisceaux issus de F1 et F2 se 

superposent. Cette zone est 

appelée champ d’interférence. 

Dans ce champ on voit une 

alternance de fines bandes sombres 

et claires (brillantes), rectilignes, 

parallèles, équidistantes appelées 

franges d’interférence.  

c) Interprétation 

La présence des franges d’interférence montre que la lumière est constituée 

d’ondes.  

 En un point M d’une frange claire se superposent les ondes lumineuses 

issues des fentes F1 et F2, arrivant en phase : les interférences sont dites 

constructives. 

 En un point M d’une frange sombre se superposent les ondes 

lumineuses issues des fentes F1 et F2 arrivant en opposition de phase : 

les interférences sont dites destructives. 

Ecran 

Frange 
sombre 

Frange centrale 
(brillante) 

Champ 
D’interféren

ce 

Ecran 

F1 

F2 

S 

Plaque opaque 
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d) Conditions d’interférence 

Pour obtenir des franges d’interférence, il faut deux sources cohérentes. Deux 

sources sont cohérentes si : 

 elles émettent des vibrations de même période (on dit qu’elles sont 

synchrones) ; 

 elles présentent une différence de phase constante ; 

 le rapport de leurs amplitudes est constant. 

1.2. Etude théorique du phénomène d’interférence 

Pour déterminer les positions des franges, on utilise un axe x’Ox dont l’origine O 

coïncide avec le milieu de la frange centrale.  

 
a) Expression de la différence de marche 

Soit un point M d’abscisse x sur la zone d’interférence. Soient deux rayons 

lumineux issus de F1 et F2 qui arrivent en M(x). 

La différence de marche 𝛿 

entre ces rayons lumineux 

représente la différence des 

chemins optiques parcourus 

par ces deux rayons pour 

arriver en M.  

 

 

 

δ = F2M − F1M = d2 − d1 

d2
2 = D2 + (x +

a

2
)
2

 et  d1
2 = D2 + (x −

a

2
)
2

⟹ 

Frange 
centrale 
(brillante

) 

O 
i 

i 

x' 

x 

a 

D 

F1 

F2 

x 

M 

O 

Ecran 

d1 
d2 
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d2
2 − d1

2 = (d2 − d1)(d2 + d1) = (x +
a

2
)
2

− (x −
a

2
)
2

= 2ax 

x ≪ D et a ≪ D ⟹ d2 + d1 = 2D ⟹ 2δD = 2ax ⟹ δ = 
ax

D
 

b) Position des milieux des franges claires 

 Un point M(x) appartient au milieu d’une frange claire si la différence de 

marche 𝛿 entre les ondes qui arrivent en M est : δ = kλ  ; k ∈Z 

δ =
ax

D
= kλ ⟹ xk= k

λD

a
  

Si k = 0 ⟹ x = 0 ∶ M est au milieu de la frange centrale ; 

Si k = 1 ⟹ x =
λD

a
 > 0 : M est au milieu de la 1ère frange claire au-dessus de 

la frange centrale. 

Si k = −1 ⟹ x = −
λD

a
 < 0 :   M est au milieu de la 1ère frange claire  en 

dessous de la frange centrale. 

 Un point M(x) appartient au milieu d’une frange sombre si la différence 

de marche 𝛿 entre les ondes qui arrivent en M est : 

 δ = (k+
1

2
) λ   ;  k ∈ Z ;  δ = (k +

1

2
) λ =

ax

D
⟹ xk= (k+

1

2
)

λD

a
 

Si k = 0 ⟹ x =
λD

2a
 > 0 ∶ M est au milieu de la 1ère frange sombre en haut de la 

frange claire 

Si k = −1 ⟹ x = −
λD

2a
< 0 ∶ M est au milieu de la 1ère frange sombre en bas 

de la frange sombre 

c) L’interfrange 

L’interfrange i est la distance qui sépare les milieux de deux franges consécutives 

de même nature. 

Soient deux franges consécutives de même nature de positions respectives 

xk et xk+1.  i = xk+1 – xk  ; i s’exprime en mètre (m). 

 Détermination de l’interfrange i à partir de deux franges claires 

consécutives 

xk = k
λD

a
 et xk+1 = (k + 1)

λD

a
⟹ i = xk+1 − xk =

λD

a
⟹ i =

λD

a
 

 Détermination de l’interfrange i à partir de deux franges sombres 

consécutives 
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xk = (k +
1

2
)

λD

a
 et xk+1 = (k + 1 +

1

2
)

λD

a
⟹  

i =  (k +
1

2
)

λD

a
+

λD

a
− (k +

1

2
)

λD

a
=

λD

a
⟹ i = 

λD

a
  

d) Ordre d’interférence 

Les positions des franges claires sont données, en fonction de l’interfrange i par : 

x = k
λD

a
 = ki ; 

Celles des franges sombres par : x = (k +
1

2
)

λD

a
= (k +

1

2
) i 

On appelle ordre d’interférence le rapport :  p = 
δ

λ
 ; p =

ax

λD
=

x

i
 ; p = 

x

i
 

L’ordre d’interférence d’une frange claire est : p = k  

L’ordre d’interférence d’une frange sombre est : p = k+
1

2
 

1.3. Interférence en lumière blanche 

Avec le dispositif des fentes de 

Young, lorsqu’on remplace la 

source de lumière 

monochromatique par une source 

de lumière blanche, on observe sur 

l’écran, des franges pratiquement 

rectilignes. A chaque radiation 

monochromatique correspond un système de franges et tous ces systèmes 

s'ajoutent en intensité. Au niveau de la frange centrale (blanche), la différence 

de marche est nulle pour toutes les radiations. Si on s'écarte de la frange centrale, 

on observe des franges irisées (colorées) et à chaque valeur de la différence de 

marche correspond une teinte déterminée. 

 

2. LES ONDES ELECTROMAGNETIQUES 
Les ondes électromagnétiques sont les ondes qui se propagent dans le vide à la 

même vitesse que la lumière. 

Les ondes E.M. portent des noms différents selon le domaine de fréquence 

auquel elles appartiennent. Elles véhiculent d’autant plus d’énergie que 

leurs fréquences sont élevées. On parle de lumière ou de domaine visible pour les 

ondes E.M. que l’œil humain est capable de détecter. 
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La lumière est une onde électromagnétique, tout comme les rayons X, les rayons 

gammas et les ondes radios. Notre œil ne peut percevoir les ondes 

électromagnétiques que si elles ont une longueur d'onde entre 400 nm et 800 nm. 

Les ondes dans cette plage font donc partie du visible, les autres sont invisibles. 

 
Application 

On considère le dispositif des fentes de Young. La distance entre les sources 𝑆1 𝑒𝑡 𝑆2 est a = 1 

mm. La distance des sources à l’écran est D = 1,20 m. 

1) La source primaire émet une radiation monochromatique de longueur d’onde 𝜆 = 0,60 μm. 

a) Calculer l’interfrange i. 

b) Calculer la distance sur l’écran qui sépare les milieux des 5ème franges obscures de part et 

d’autre de la frange centrale. 

2) La source émet simultanément deux radiations de longueurs d’onde respectives 0,60 μm et 

0,45 μm. A quelle distance du milieu de la frange centrale se produit la première fois coïncidence 

entre deux franges brillantes correspondant aux deux radiations ? 
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P13 : EFFET PHOTOELECTRIQUE 
 

1. MISE EN EVIDENCE DE L’EFFET 

PHOTOELECTRIQUE 

1.1. Expérience de Hertz 

Considérons un électroscope dont le plateau est en zinc.  

 
On constate que : 

 En chargeant l’électroscope négativement et en éclairant le plateau avec 

la lumière UV, l’électroscope se décharge. 

 En chargeant positivement l’électroscope et éclairant le plateau, 

l’électroscope ne se décharge. 

1.2. Interprétation 

D’après cette expérience, on peut dire que les rayons UV attirent les charges 

négatives (électrons). Ce qui fait que l’électroscope se décharge dans le cas où il 

est chargé négativement. 

1.3. Définition de l’effet photoélectrique 

L’effet photoélectrique est l’émission d’électrons par un matériau 

convenablement éclairé.  

Il a été découvert en 1889 par le physicien allemand  Heinrich Rudolf Hertz. 

 

2. INTERPRETATION DE L’EFFET 

PHOTOELECTRIQUE 

2.1. Théorie d’Einstein 

L’effet photoélectrique ne peut pas être expliqué par l’aspect ondulatoire la 

lumière. Pour l’expliquer, Albert Einstein propose en 1905 la théorie 

- - - 

- 
- 
- - - - 

- - 

Rayons UV 
Plateau en zinc 

Electroscope chargé Electroscope déchargé 

https://fr.wikipedia.org/wiki/Heinrich_Rudolf_Hertz
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corpusculaire de la lumière : la lumière est constituée de particules appelées 

photons de masse et de charge nulles, se déplaçant à la vitesse à la lumière. 

c = 3.108 m.s-1   

Un photon possède de l’énergie appelée quantum d’énergie proportionnelle à 

la fréquence 𝜈 de la radiation correspondante.  

E = hν  ; h est la constante de Planck : h = 6,62.10-34 J.s 

E = hν = h
1

T
= h

c

λ
   ;  E = h

c

λ
 

2.2. Condition d’extraction des électrons 

L’expérience montre que certains rayonnements ne peuvent pas extraire des 

électrons sur n’importe quel métal. Pour extraire des électrons il faut fournir au 

métal une énergie au moins égale au travail d’extraction ou de liaison de l’électron. 

W0 = hν0 = h
c

λ0
  

ν0 et λ0 sont appelés respectivement la fréquence seuil et la longueur d’onde 

seuil du métal. Ce sont des caractéristiques du métal. 

Considérons un photo d’énergie 𝐖 = 𝐡𝛎 envoyé sur un métal d’énergie 

d’extraction 𝐖𝟎 = 𝐡𝛎𝟎. 

 Si 𝐖 < 𝐖𝟎 ⟹ 𝛎 < 𝛎𝟎 𝐨𝐮 𝛌 > 𝛌𝟎 , alors il n y a pas d’effet 

photoélectrique.  

 Si 𝐖 = 𝐖𝟎 ⟹ 𝛎 = 𝛎𝟎 ou 𝛌 = 𝛌𝟎, alors il y a effet photoélectrique mais 

l’électron reste immobile à la surface du métal. 

 Si 𝐖 > 𝐖𝟎  ⟹ 𝛎 > 𝛎𝟎 ou 𝛌 < 𝛌𝟎, alors il y a effet photoélectrique et 

les électrons acquièrent une énergie cinétique qui est égale à l’énergie 

supplémentaire.  Ec =
1

2
mvmax

2 = W − W0 = h(ν − ν0) ⟹ 

1

2
mvmax

2  = h(ν – ν0)   

Application 

Une cellule photoélectrique comprend une plaque métallique recouverte de césium. L’énergie 

d’extraction d’un électron de ce métal est 𝐸0 = 1,88 𝑒𝑉. Elle est éclairée successivement par 

deux radiation de longueurs d’onde 𝜆1 = 700 𝑛𝑚 𝑒𝑡 𝜆2 = 540 𝑛𝑚. 

1) Préciser dans quel cas on a effet photoélectrique. 

2) Calculer la vitesse maximale des électrons extraits du métal par la radiation permettant l’effet 

photoélectrique. 
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3. DUALITE ONDE CORPUSCULE DE LA LUMIERE 
Les phénomènes de réflexion, de réfraction, de diffraction et d’interférence 

lumineuse traduisent l’aspect ondulatoire de la lumière. La lumière est une onde 

électromagnétique qui se propage à la vitesse c = 3.108m.s-1 dans le vide et dans 

l’air. 

Le phénomène d’effet photoélectrique traduit l’aspect corpusculaire de la lumière. 

La lumière est donc à la fois onde et corpuscule. Elle est à la fois un phénomène 

continu sous son aspect ondulatoire et un phénomène discontinu sous son aspect 

corpusculaire.  

 

4. APPLICATIONS  
Détecteur de niveau, dispositif de sécurité des banques, fournir de l'électricité 

(cellule photovoltaïque). 
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P14 : NIVEAUX D’ENERGIE DE L’ATOME 
 

1. SPECTRES ATOMIQUES 

1.1. Spectre d’émission et spectre d’absorption 

Les atomes d’un gaz sous faible pression peuvent émettre une lumière dont le 

spectre est constitué de raies fines. On parle de spectre d’émission.  

Si on place le gaz précédent sur le trajet de la lumière blanche, le spectre après la 

traversée de la lumière, montre qu’une partie des radiations de la lumière blanche 

est absorbée. On parle de spectre d’absorption.  

On remarque que les longueurs d’onde des radiations manquantes sont égales aux 

longueurs d’onde du spectre d’émission. 

 Les spectres atomiques d’émission sont caractéristiques des atomes qui 

les produisent. Ils sont constitués de raies correspondant à des radiations 

monochromatiques précises. 

 Les spectres d’absorption sont constitués de raies noires dans le spectre 

continu de la lumière blanche. 

 Les spectres d’absorption et d’émission sont des spectres de raies. Ils 

sont discontinus. 

1.2. Interprétation des spectres d’émission et 

d’absorption 

Pour expliquer l’existence des spectres de raies bien définies, le physicien Danois 

Niels Henrik David Bohr introduit en 1913 les postulats suivants :  

 L’atome ne peut exister que dans certains états d’énergie bien définis ; 

chaque état est caractérisé par un niveau d’énergie ; 

 Les variations d’énergie de l’atome sont quantifiées ; 

 Un photon de fréquence ν est émis ou absorbé lorsque l’atome effectue 

une transition entre deux niveaux d’énergie ; 

 

2. APPLICATION A L’ATOME D’HYDROGENE 

2.1. Niveaux d’énergie de l’atome d’hydrogène 

L’atome d’hydrogène est le plus simple des atomes. Il est constitué d’un électron 

gravitant autour d’un proton pour l’isotope le plus abondant. Le niveau d’énergie 

d’ordre n de cet atome est donné par la relation :  

En = – 
13,6

n2
 = – 

E0

n2
 (eV) ⟹ E0 = 13,6 eV   

http://auroresboreales.e-monsite.com/pages/lexique.html
http://auroresboreales.e-monsite.com/pages/lexique.html
http://auroresboreales.e-monsite.com/pages/lexique.html
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n : est appelé nombre quantique principal, il peut prendre que des valeurs 

entières : 1 ; 2 ; 3 ; 4 … 

 Si n = 1 ⟹ E1 = – 13,6 eV : c’est le niveau d’énergie le plus bas : 

l’atome est à l’état fondamental, état le plus stable. 

 Si n = ∞ ; ⟹ E = E∞ = 0, l’atome est ionisé.  

 
o Si l’atome passe d’un niveau m d’énergie Em à un niveau p d’énergie Ep 

(m > p), alors il émet un photon d’énergie égale à : hνmp. 

 

∆E = Ep- Em = –
E0

p2
+

E0

m2
 = E0 (

1

m2
–

1

p2
)  < 0 ⟹ hνmp = h

c

λmp
 = |∆E|    

o Si l’atome passe d’un niveau p d’énergie Ep à un niveau q d’énergie Eq 

(p < q), alors il absorbe un photon d’énergie égale à : hνpq .  

 

En(eV) 

-13,6 

-3,4 

-1,51 
-0,85 
-0,54 

0 

E1 état fondamental 

états excités 

état ionisé 

E2 

E3 

E4 
E5 

E∞ 

Em 

Ep 

Emission d’un photon 
d’énergie : hυmp 

Eq 

Ep 

Absorption d’un photon 
d’énergie : hυqp 
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∆E = Eq- Ep= -
E0

q2
+

E0

p2
 = E0 (

1

p2
-

1

q2
) = hνqp= h

c

λqp
  

Remarque : 

 Pour ioniser l’atome d’hydrogène à partir de son état fondamental, il faut 

au moins lui fournir une énergie égale à 13,6 eV.  

En effet : ∆E = E∞ − E1 = 0 − (−
E0

12
) = E0 = 13,6 eV. 

 Lorsque l’atome d’hydrogène reçoit un photon dont l’énergie est 

supérieure à l’énergie d’ionisation de l’atome à l’état où il se trouve, ce 

photon est absorbé : une partie de son énergie sert à ioniser l’atome, 

l’autre est transférée à l’électron de l’atome sous forme d’énergie 

cinétique. 

 Lorsque l’atome d’hydrogène reçoit un photon dont l’énergie est 

inférieure à l’énergie d’ionisation de l’atome à l’état où il se trouve, ce 

photon ne peut être absorbé que si son énergie correspond exactement 

à l’énergie de transition entre le niveau Em où se trouve l’atome 

d’hydrogène et un niveau d’énergie Ep (p > m). 

 Si un atome d’hydrogène de niveau d’énergie En reçoit un électron 

ayant une énergie cinétique EC, l’atome peut passer à un niveau d’énergie 

supérieure Ep si EC ≥ ∆E = Ep – En.  

L’électron « rebondit » avec une énergie cinétique : EC
′  = EC – ∆E  

Application 

1) Calculer la fréquence de la lumière absorbée par l’atome d’hydrogène lorsqu’il passe du niveau 
fondamental au niveau excité n = 3. 
2) Calculer l’énergie qu’il faut fournir à l’atome d’hydrogène pour l’ioniser dans les cas suivants : 

a) l’atome se trouve à l’état fondamental ; 
b) l’atome se trouve au niveau d’énergie E3. 

3) On fournit successivement à l’atome d’hydrogène pris dans son état fondamental des photons 

d’énergie respectives : 6 eV  ; 12,75 eV et 18 eV. Dans quel(s) cas le photon est-il absorbé ? 
Dans le cas où l’atome est ionisé, calculer l’énergie cinétique de l’électron.  
4) On excite un atome d’hydrogène pris dans son état fondamental par un électron ayant une 

énergie cinétique EC = 12,53 eV. Quel niveau d’énergie occupera l’hydrogène juste après le choc 
avec l’électron ? Calculer la vitesse de rebondissement de l’électron après le choc.  

On donne masse de l’électron m = 9,1.10-31 kg. 
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2.2. Série de raies d’émission de l’atome d’hydrogène 

Une série de raies correspond à l’ensemble des radiations émises lorsque l’atome 

passe des différents niveaux excités p à un même niveau n avec (n < p). 

Pour l’hydrogène, on a entre autres, les séries de raies de Lyman (n = 1), de 

Balmer (n = 2), de Paschen (n = 3)… 

 
NB : Dans une série, la raie ayant la plus grande fréquence dans le vide, est 

appelée raie limite, et la longueur d’onde correspondante est appelée longueur 

d’onde limite de cette série. 

Calcule des longueurs d’onde limites des séries de Lyman, Balmer et 

Paschen. 

hνlim =
hc

λlim
= |En − E∞| = |−

E0

n2
| =

E0

n2 ⟹ λlim = n2 hc

E0
 

Pour la série de Lyman : n = 1 ⟹  λlim = 
hc

E0
 = 91.10-9 m = 91 nm 

Pour la série de Balmer : n = 2 ⟹ λlim = 
4hc

E0
 = 365.10-9 m = 365 nm 

Pour la série de Paschen : n = 3 ⟹ λlim = 
9hc

E0
 = 821.10-9 m = 821 nm 

3. APPLICATIONS 
Les spectres atomiques sont utilisés pour la détermination :  

- De la composition chimique des corps ; 

- De la température des étoiles, 

- De la composition chimique de la couronne solaire. 

E

n 

E1 

Série de Lyman (UV) 

E2 

E3 

E4 

E∞ 

Série de Balmer (Visible, UV) 

Série de Paschen (IR) 

Série de Bracket (IR) 
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P15 : REACTIONS NUCLEAIRES 
 

1. LE NOYAU ATOMIQUE 

1.1. Constituants du noyau 

Le noyau atomique est constitué de nucléons, particules qui sont : 

 des protons, de masse mp ≈ 1,67.10-27 kg et de charge e = +1,6.10-19 C ; 

 des neutrons, de masse mn ≈ 1,67.10-27 kg ; les neutrons n’ont pas de charge. 

1.2. Nucléide 

Un nucléide est un type d'atome ou de noyau atomique caractérisé par le nombre 

de protons et de neutrons qu'il contient. 

Un nucléide est symbolisé par XZ
A  :   

X : étant le symbole de l’élément chimique correspondant au nucléide ; 

A : le nombre de masse ou nombre de nucléons du nucléide ; 

Z : le numéro atomique ou nombre de charge ou nombre de protons de l’élément 

chimique correspondant au nucléide. 

Si N est le nombre de neutrons du nucléide, alors on a : N = A – Z  

1.3. Notion d’isotopes 

On appelle isotopes des nucléides ayant le même nombre protons et des nombres 

de nucléons différents. 

C6
14  ; C6

13  et C6
12  : sont des isotopes du carbone. 

H1
3  ; H1

2  et H1
1  : sont des isotopes de l’hydrogène. 

NB : un isotope est un noyau qui se distingue des autres noyaux d’un même 

élément chimique par son nombre de nucléons. Exemple : le carbone 14 est un 

isotope. 

 

2. NOYAUX, ENERGIE ET MASSE  

2.1. Relation d’Einstein : équivalence masse-énergie 

D’après Einstein, la masse est une forme d’énergie. Un système massif au 

repos possède une énergie due à sa masse, appelée énergie de masse : Elle 

est donnée par :     E = m.c²   

E : énergie de masse (J) 

m : masse (kg) 

c : vitesse de la lumière dans le vide : c= 3.108 m/s 

http://fr.wikipedia.org/wiki/Atome
http://fr.wikipedia.org/wiki/Noyau_atomique
http://fr.wikipedia.org/wiki/Proton
http://fr.wikipedia.org/wiki/Neutron
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2.2. Unité de masse atomique 

L’unité de masse atomique notée u est égale au 1/12 de la masse du carbone 12.  

1u = 1,66.10-27 kg  

L’énergie correspondant à 1 u est environ égale à 931,5 MeV.  

1u = 931,5 MeV/c2  

Remarque : la masse d’un noyau XZ
A  est sensiblement égale à A.u  

Exemple : m( C6
14 ) = 14u = 2,324.10-26 kg 

2.3. Lois de conservation 

Soit une réaction nucléaire quelconque d’équation :  

X1Z1

A1  + X2Z2

A2   ⟶   X3Z3

A3  + X4Z4

A4   

 Loi de Soddy 

Enoncé : Lors d'une transformation nucléaire, il y a conservation de la charge 

électrique et du nombre de masse A. Cette loi ou ces lois permettent d’équilibrer 

une réaction nucléaire : {
A1 + A2 = A3 + A4

Z1 + Z2 = Z3 + Z4
 

 Loi de conservation de l’énergie 

L’énergie d’une particule est égale à la somme de son énergie cinétique et de son 

énergie de masse. 

m1c
2 + EC(X1) + m2c

2 + EC(X2) = m3c
2 + EC(m3) + m4c

2 + EC(m4) ⟹ 

[(EC(X3) + EC(X4)] − [EC(X1) + EC(X2)] = −[(m3 + m4) − (m1 + m2)]c² 

⟹ ∆EC = – ∆mc²  

o Si ∆m < 0 : il y a perte de masse, donc dégagement d’énergie : la 

réaction dégage de l’énergie. 

o Si ∆m > 0 :  il y a transformation d’énergie cinétique en masse : la 

réaction absorbe de l’énergie. 

Remarque 

Toute désintégration s’accompagne d’une perte de masse. Lors d’une 

transformation nucléaire, l’énergie est libérée sous deux formes : cinétique et 

rayonnante. 

L’énergie libérée lors de la transformation nucléaire :  

X1Z1

A1  + X2Z2

A2   ⟶   X3Z3

A3  + X4Z4

A4 , peut être calculée de deux manières : 

o Soit en utilisant la variation de masse ∆m : 

https://fr.wikipedia.org/wiki/Charge_%C3%A9lectrique
https://fr.wikipedia.org/wiki/Charge_%C3%A9lectrique
https://fr.wikipedia.org/wiki/Nombre_de_masse
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E = ∆mc2= [(mX3
+ mX4

) – (m
X1

+ mX2
)] c2  

o Soit en utilisant les énergies de liaison des noyaux :  

E = [Eℓ(X1) + Eℓ(X2)] – [Eℓ(X3) + Eℓ(X4)]  

 Loi de conservation de la quantité de mouvement 

m1v⃗ 1 + m2v⃗ 2 = m3v⃗ 3 + m4v⃗ 4  

 

3. STABILITE DES NOYAUX  

3.1. Défaut de masse d’un noyau 

La masse d’un noyau XZ
A  est inférieure à la somme des masses de chacun de ses 

nucléons pris isolément. Cette différence de masse est appelée défaut de masse 

∆m.     ∆m = Zmp+ (A – Z)mn– m( XZ
A )  

3.2. Energie de liaison d’un noyau  

L’énergie correspondant au défaut de masse ∆m d’un noyau XZ
A  est appelée 

énergie de liaison ou de cohésion. C’est l’énergie qu’il faut fournir à un noyau 

au repos pour le dissocier en nucléons isolés et immobiles. 

Eℓ = [Zmp + (A – Z)mn– m( XZ
A )]c2 = ∆m.c2   

3.3. Energie de liaison par nucléon d’un noyau 

L’expression de l’énergie de liaison par nucléon notée Ea d’un noyau XZ
A  est :  

Ea = 
Eℓ

A
  

Plus Ea est grande, plus le noyau est stable.  

 Si Ea ≥ 8 MeV, le noyau est stable. 

 Si Ea < 8 MeV, le noyau est instable. 
De deux noyaux, le plus stable est celui qui a l’énergie de liaison par nucléon la 

plus grande. 

Application 

Calculer en MeV l’énergie de liaison par nucléon d’un noyau d’uranium 238. Conclure. 

On donne : m( U92
238 ) = 238,05 u    ;   mp= 1,007276 u    ;   mn= 1,008665 u ; 

1 u = 931,5 MeV c²⁄ = 1,66.10-26 kg 
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4. RADIOACTIVITE NATURELLE : 

TRANSFORMATION SPONTANEES 

En 1896, Henry Becquerel découvrit que l’uranium et ses composés 

émettaient continuellement un rayonnement capable de traverser la matière. 

Poursuivant les travaux de Becquerel, Pierre et Marie Curie ont donné à ce 

phénomène le nom de radioactivité. 

4.1. Définition 

La radioactivité est la transformation spontanée (désintégration) des noyaux 

atomiques instables (radioactifs) en d’autres noyaux plus stables avec émission 

de particule et de rayonnement radioactifs. 

4.2. Caractéristiques 

Les transformations radioactives sont : 

o Spontanées : elles se produisent seules sans aucune intervention, 

o Aléatoires : l’instant de désintégration d’un noyau ne peut pas être prévu, 

o Inéluctables : rien ne peut empêcher ou modifier leurs déroulements, 

4.3. Les types de particules (ou rayonnements) 
radioactifs 

A l’aide d’un champ électrique (ou magnétique), on peut séparer les différentes 

particules émises par une substance radioactive (radioélément).  

 
Les déviations observées montrent qu’il existe 4 types de particules ou 4 types de 

radioactivité : 

 la particule 𝛂 (noyau d’hélium 𝐇𝐞𝟐
𝟒 ), il est très ionisant mais peu 

pénétrant (une feuille de papier peut l’arrêter) ; 

 la particule 𝛃− (électron 𝐞−𝟏
𝟎 ), il est peu ionisant mais très pénétrant ; 
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 la particule 𝛃+(positon ou antiélectron 𝐞𝟏
𝟎 ), il a les mêmes propriétés 

que β− ; 

 le rayonnement γ : (photons), il est excitant et très pénétrant. C’est le 

rayonnement le plus dangereux biologiquement. 

4.4. Equations bilans des réactions nucléaires 

spontanées 

a) Radioactivité α( 𝐇𝐞𝟐
𝟒 ) 

Le noyau père est trop lourd, il contient trop neutrons et trop de protons (A > 

200). 

 

b) Radioactivité 𝛃+ ( 𝐞)𝟏
𝟎   

Le noyau père expulse un positon (particule de charge +e et de même masse que 

l’électron). Un proton du noyau se transforme en neutron et l’émission du 

positron s’accompagne de l’émission d’un neutrino (particule de masse nulle). 

 

c) Radioactivité 𝛃− ( 𝐞−𝟏
𝟎 ) 

Le noyau père expulse un électron. Un neutron du noyau se transforme en 

proton, et l’émission de l’électron s’accompagne de l’émission d’un antineutrino 

(particule de masse nulle). 

 

d) Radioactivité 𝛄 

La radioactivité γ peut accompagner les radioactivités α, β+, β−. Le noyau fils est 

émis dans un état excité, alors il revient à l’état fondamental avec émission d’un 

rayonnement électromagnétique γ. 

Exemple : X    ⟶  Y*
Z-2

A-4

Z

A

 + He2
4       ;     Y*

Z-2

A-4
   ⟶   Y + γ

Z-2
A-4

 

 

XZ
A    ⟶   He2

4   +   YZ - 2
A - 4  

Noyau père Noyau fils 

XZ
A    ⟶   e1

0    +   YZ-1
A  + ν0

0  
Noyau père Noyau fils 

XZ
A    ⟶   e-1

0    +   YZ+1
A  + ν̅0

0  

Noyau père Noyau fils 
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NB : 

Une famille radioactive est l’ensemble des nucléides issus d’un même noyau père.  

Famille du Thorium : 232Th Famille de l’Uranium : 238U 

Famille de l’Actinium :  235U Famille du Neptunium : 237Np 

Application 

Le radium Ra88
226  se désintègre spontanément en émettant une particule 𝛼. Le noyau fils obtenu 

est un isotope du radon Rn. 

1) Donner la composition du noyau de radium 226. 

2) Ecrire l’équation de désintégration du noyau de radium 226. 

3) Calculer en MeV puis en joule l’énergie libérée lors de la désintégration d’un noyau de radium 

226. 

On donne : 

m( Ra88
226 ) = 225,97786 u ; m(Rn) = 221,97108 u ; m( He) = 4,00151 u

2

4  ; 

1 u = 931,5 MeV c²⁄  ; 1 u = 1,66.10-27 kg. 

 

5. LOI DE DECROISSANCE RADIOACTIVE 

5.1. Expression du nombre de noyaux radioactifs en 

fonction du temps 

Soit XZ
A  un noyau radioactif qui subit de manière spontanée une réaction nucléaire 

d’équation :  

 

N0 :   est le nombre de noyau initialement radioactifs. 

N = N0- x :  est le nombre de noyau radioactifs à l’instant t.  

x :   est le nombre de noyaux désintégrés à l’instant t. 

La variation du nombre de noyaux est proportionnelle au nombre de noyaux 

restants.   
N – N0

t – t0
 = - λN ⟹ 

∆N

∆t
 = – λN  

 𝜆 : est constante positive appelée constante radioactive. C’est une caractéristique 

du noyau XZ
A .  

∆N

∆t
 = -λN ⟹ 

dN

N
= −λdt ⟹ ℓnN = – λt + K   
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A t = 0, N = N0 ⟹ K = ℓnN0 ⟹ ℓn (
N

N0
) = −λt ⟹ N = N0e–λt    

1

λ
 = τ  : est la durée de vie moyenne.  

5.2. Période radioactive ou demi-vie 

La période radioactive ou demi-vie T est la durée au bout de laquelle la moitié des 

noyaux radioactifs initialement présents se sont désintégrés.   

A t = T, on a : N =
N0

2
 ⟹ N0e

−λT =
N0

2
 ⟹ −λT = ℓn

1

2
= − ln 2 ⟹  

 T =
ℓn 2

λ
  

5.3. Représentation graphique de la courbe N = f(t) 

Au bout d’un temps t = nT, on a :  

N = N0
−λnT = N0e

−
λnln2

λ = N0e
−nln2 = N0e

−ln2n
=

N0

eℓn2n =
N0

2n  ; 

N =
N0

2n   

 
5.4. Activité radioactive 

L’activité A(t) d’une substance radioactive est le nombre de désintégration par 

unité de temps.  

A(t) = –
d

dt
N(t)    ;  A(t) = −

d

dt
(N0e

−λt) = λN0e
−λt = λN(t) ⟹ 

A(t) = λN(t)  

A t0, A(t) = A0 = λN0  ⟹ A(t) = A0e–λt  

N0

N0/2

N0/4

N0/8

T 2T 3T0
0

N

t
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L’activité s’exprime dans le SI en Becquerel (Bq).  

1Bq = 1 désintégration/s  

On utilise couramment le Curie (Ci) ; 1 Ci = 3,7.1010 Bq  

 

6. REACTIONS NUCLEAIRES PROVOQUEES : 

RADIOACTIVITE ARTIFICIELLE 

6.1. Fission nucléaire 

La fission est la rupture d’un noyau lourd en deux noyaux plus légers sous l’action 

d’un neutron lent. La fission produit des neutrons.    

Exemple : U + n   ⟶   Xe54
140

0

1

92

235

 + Sr + 2 n0
1

38

94
 

Sr : strontium et Xe : xénon 

NB 

 Un noyau est dit fissile s’il peut subir une fission nucléaire. 

 Un noyau est dit fertile s’il peut engendrer un noyau fissile. 

Application 

1/ Calculer en MeV l’énergie libérée par la fission d’un noyau d’uranium 235 suivant la 

réaction : U + n   ⟶   Xe54
140

0

1

92

235

 + Sr + 2 n0
1

38

94
 

2/ En déduire l’énergie libérée par nucléon lors de cette fission. 

3/ Calculer l’énergie libérée par la fission d’un gramme d’uranium 235. 

On donne :  

m( U92
235 ) = 234,9935 u ; m( Sr) = 93,8945 u

38

94  ; m( Xe54
145 ) = 139,8920 u ; 

mn = 1,0087 u ; 1 u = 931,5 MeV c²⁄ = 1,66.10-27 kg. 

6.2. Fusion nucléaire 

La fusion nucléaire est l'union de deux noyaux légers qui engendre un noyau plus 

lourd. 

Fusion de deux noyaux de deutérium :  

H+ H1
2

1

2
  ⟶  He2

3 + n0
1      ;    H+ H1

2
1

2
  ⟶  H1

3 + p
1
1  

Fusion d'un noyau de deutérium et d'un noyau de tritium : 

 H+ H1
3

1

2
  ⟶  He2

4 + n0
1  

 

https://fr.wikipedia.org/wiki/Fission_nucl%C3%A9aire
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Application 

On fait la fusion d'un noyau de deutérium et d'un noyau de tritium. Il se forme de l’hélium 4 et 

une émission d’une autre particule. 

1/ Ecrire l’équation bilan de la réaction de fusion. 

2/ Calculer en MeV l’énergie libérée par cette fusion. En déduire l’énergie libérée par nucléon 

lors cette fusion. 

On donne :  

m( H1
2 ) = 2,0160 u ; m( H1

3 ) = 3,0247 u ; ( He2
4 ) = 4,0015 u ; mn= 1,0087 u. 

6.3. Comparaison des réactions de fission et de fusion 
nucléaires 

Pour réaliser la fission nucléaire, on fait la capture d’un neutron « lent » par un 
noyau fertile qui devient fissile. 
La réaction de fusion nucléaire nécessite une haute température pour se produire.  
Les réactions de fission et de fusion nucléaires sont très exoénergétiques :  

 Un noyau d'uranium 235 libère 200 MeV soit 1 MeV par nucléon ; 
 Le cycle proton-proton (série de réactions thermonucléaires dans les 

étoiles) libère 6 MeV par nucléon. 
Contrairement à la fission nucléaire, les produits de la fusion eux-mêmes 
(principalement de l’hélium 4) ne sont pas radioactifs, mais lorsque la réaction 
utilisée émet des neutrons rapides, ces derniers peuvent transformer les noyaux 
qui les capturent en isotopes pouvant être radioactif. 
 

7. APPLICATIONS ET CONSEQUENCES DE LA 

RADIOACTIVITE 

7.1 Applications 

La radioactivité offre de nombreuses applications dont la datation des objets 
archéologiques et la radiographie en médecine. La fusion nucléaire est à l'origine 
de la bombe H et la fission nucléaire à celle de la bombe A. 
Les réactions nucléaires ont pour application principale la production d’énergie 
électrique dans les centrales nucléaires. 

7.2. Conséquences 

En traversant la matière, les particules α et β, ainsi que le rayonnement γ, émis par 
les corps radioactifs, provoquent des ionisations responsables de destructions 
cellulaires pouvant entrainer la mort. 
A faible dose, ils sont la cause de divers troubles, d’une augmentation des risques 
de cancers et peuvent engendrer des anomalies génétiques. 
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